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Abstract. This paper reports on the results of a three-year research effort aimed at investigating and exploiting the
role of physically motivated asymptotic analysis in the design of numerical methods for singular limit problems
in fluid mechanics. Such problems naturally arise, among others, in combustion, magneto-hydrodynamics, and
geophysical fluid mechanics. Typically, they are characterized by multiple-space and/or -time scales and by the
disturbing fact that standard computational techniques fail entirely, are unacceptably expensive, or both. The
challenge here is to construct numerical methods which are robust, uniformly accurate, and efficient through
different asymptotic regimes and over a wide range of relevant applications. Summaries of multiple-scales as-
ymptotic analyses for low-Mach-number flows, magneto-hydrodynamics at small Mach and Alfvén numbers,
and of multiple-scales atmospheric flows are provided. These reveal singular balances between selected terms in
the respective governing equations within the considered flow regimes. These singularities give rise to problems
of severe stiffness, stability, or to dynamic-range issues in straight-forward numerical discretizations. A formal
mathematical framework for the multiple scales asymptotics is then summarized by use of the example of multiple-
length-scale single-time-scale asymptotics for low-Mach-number flows. The remainder of the paper focuses on the
construction of numerical discretizations for the respective full governing equation systems. These discretizations
avoid the pitfalls of singular balances by exploiting the asymptotic results. Importantly, the asymptotics are not
used here to derive simplified equation systems, which are then solved numerically. Rather, numerical integration
of the full equation sets is aimed at and the asymptotics are used only to construct discretizations that do not
deteriorate as a singular limit is approached. One important ingredient of this strategy is the numerical identifi-
cation of a singular limit regime given a set of discrete numerical state variables. This problem is addressed in
an exemplary fashion for multiple-length single-time-scale low-Mach-number flows in one space dimension. The
strategy allows a dynamic determination of an instantaneous relevant Mach number, and it can thus be used to
drive the appropriate adjustment of the numerical discretizations when the singular limit regime is approached.
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1. Introduction

Here we report on the results of a three-year research effort aimed at investigating and exploit-
ing the role of physically motivated asymptotic analysis in the design of numerical methods
for singular limit problems in fluid mechanics. Such problems naturally arise, among others,
in combustion, magneto-hydrodynamics, and geophysical fluid mechanics. Typically, they are
characterized by multiple space and/or time scales and by the disturbing fact that standard
computational techniques fail entirely, are unacceptably expensive, or both. The challenge
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here is to construct numerical methods which are robust, uniformly accurate, and efficient
through different asymptotic regimes and over a wide range of relevant applications.

1.1. KEY IDEAS

In order to successfully address the goal stated above one must first accept a shift of paradigm
as compared to standard applications of asymptotics: The goal of most of these applications
is to derive a simplified asymptotic set of equations which can be solved analytically or with
less numerical effort than the original full equation system. The target in this situation is to
obtain approximate solutions to a restricted class of problems, which can then be used instead
of the unavailable or expensive solutions to the full problem. This utilization of asymptotics
could be labeled ‘solution oriented’.

We contrast this with a ‘structure oriented’ exploitation of asymptotics: The ultimate goal
here is the numerical solution of the full equation systems. The key questions in this context
are: “What are the reasons for the failure of standard numerical schemes in singular limit
regimes?” and “How are these reasons related to the asymptotic behavior of the full equation
system?”. To answer these questions, one must focus on the process of deriving simplified
asymptotic limit equations rather than on these equations themselves. In the course of an
asymptotic analysis one gains improved insight into the mathematical structure of the singular
limit and obtains systematic hints at the origins of the failure of standard numerical methods.
It is hoped, and has been verified in a number of examples by now, that this insight can be
used to develop improved numerical techniques that avoid the pitfalls of standard schemes
and allow one to treat singular and non-singular cases numerically in a unified fashion.

As an example, let us consider the case of low-Mach-number flow, which has been pursued
extensively within this project. Asymptotic analysis is most comprehensive, and often consid-
ered most elegant, when carried out in terms of a suitably chosen system of coordinates and
dependent variables. The probably most efficient choice of dependent variables for low-Mach-
number flow are the so-called ‘primitive variables’, namely density, velocity and pressure.
Suppose, however, that we intend to extend a standard compressible flow solver to the low-
and zero- Mach-number regime. One quickly finds that modern compressible flow solvers are
in conservation form for mass, momentum and energy and that the key quantities of these
numerical methods are grid-cell averages of the mass, momentum, and energy densities and
their respective flux densities.

The challenge then is to derive and incorporate the singular limit behavior of these fluxes
in an extended numerical scheme. Obviously, the most appropriate choice of variables for a
related asymptotic analysis are now the conserved quantities, regardless of the efficiency or
elegance of the procedure. The results - to be described in more detail below - are somewhat
surprising in that the familiar divergence constraint for the velocity field in this formulation has
nothing to do with mass continuity, but is rather a consequence of energy conservation. This in
turn implies that a numerical scheme in conservation form should automatically incorporate
suitable elliptic constraints as part of solving the energy-conservation equation, rather than by
imposing velocity-divergence conditions externally.

Technically, the following program needs to be pursued in order to realize the desired
merging of numerical and asymptotic methods:
1. Identify an equation system and one of its singular limit regimes in which standard nu-

merical methods deteriorate,



Asymptotic adaptive methods for multi-scale problems in fluid mechanics263

2. Reformulate existing asymptotic analyses to match the numerical framework or, if neces-
sary, invent an appropriate new asymptotic approach such that conclusions can be drawn
regarding the failure of the standard numerical method,

3. Develop modifications of the numerical technique to overcome its limitations in the sin-
gular regime on the basis of the asymptotic analysis.

The implementation of this program requires the close collaboration of scientists from
a wide range of backgrounds: The first step should be driven by applications from natural
sciences and engineering. It is hardly possible to cover all conceivable singular limit regimes
for any given equation system, so that an educated judgement regarding the importance of any
particular regime in applications should guide the selection of the target problem. The second
step requires the input of both a skilled ‘asymptotician’ and a numerical analyst, familiar
with the mathematical structure of the considered numerical methods. The third step should
be pursued by the same combination of experts, this time with the major work load on the
specialist in numerical methods. Ultimately, the applied scientist or engineer is required again
in defining suitable tests and applications for the new method that would serve the validation
of the method and be sufficiently close to applications to be meaningful in the first place.

An important additional branch of work is concerned with a mathematically precise formu-
lation of both the asymptotic analysis and its translation into extended numerical techniques.
The incorporation in a numerical method of asymptotic results, which are generally derived
under specific simplifying assumptions regarding the considered physical problems, requires
discrete numerical operations that properly match the asymptotic limit processes. Therefore,
particular emphasis is given to the derivation of rigorous guidelines and rules which determine
under which conditions it is possible to use the asymptotics and under which it is not.

The joint project summarized in this paper has brought together scientists with partly over-
lapping and partly complementary competences in order to cover the required range of scien-
tific expertise. The authors acknowledge the generous support by the Deutsche Forschungs-
gemeinschaft under grants KL 611/6-i, MU 1319/2-i and SO 363/2-i (i ∈ {1,2}).
1.2. OVERVIEW

There are three main sections to this paper. Section 2 summarizes asymptotic analyses for a
number of fluid-mechanical problems. These analyses have been developed as guidelines in
the construction of improved numerical methods. Thus, even though some of the considered
regimes have been discussed in the literature before, both the presentation and the conclusions
drawn here should be new. Specifically we address the following issues:
• low-Mach-number weakly compressible flows in a single-time multiple-space-scale regime,

• Magneto-hydrodynamics for small Mach and Alfvén numbers, and

• Atmospheric flows under a particular distinguished limit for the Mach and Froude num-
bers, namely Fr= M as M→0.

Section 3 provides a general mathematical framework for the asymptotics and prepares
for its later ‘translation’ into numerical procedures for the multiple-scales analysis given in
Section 2.1. We state in unambiguous terms what assumptions and conditions have to be
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satisfied by solutions of the systems considered in order to allow an asymptotic (multiple-
scales) approximation. Note that the analyses do not prove that such solutions actually do
satisfy those constraints. Such proofs are formidable tasks for each application. They are
hardly generalizable and beyond the scope of the present paper. Even though the discussion
is motivated by the low-Mach-number limit, its results are more generally applicable. These
developments are important in the context of transferring asymptotic results into numerical al-
gorithms: Asymptotic multiple-scales procedures typically involve averaging procedures and
the extraction of small-scale fluctuations, which are easily defined formally and in the limit
of vanishing scale separation parameters. However, in a numerical application one is typically
faced with small,but finitevalues of these parameters and the exact definitions of averaging
operators and their discrete analogues become crucial. This section as well as Section 4.1
should be considered as exemplary in the sense that such a rigorous, detailed analysis should
ideally be pursued for any asymptotics/ numerics merger.

Section 4 describes the announced translation of asymptotic results into improved numeri-
cal procedures. Subsection 4.1 addresses an issue that is a cornerstone of any attempt at using
asymptotics in the construction of numerical methods. Asymptotic analysis may be described
as a systematic procedure for the construction of particular approximate solutions to a given
equation system. Such solutions are proper approximations only in the particular limit regime
they are designed for. As an example consider low-Mach-number flows: the disparity between
flow velocities and the speed of sound can, under suitable initial and boundary conditions,
induce a time-scale separation. In this case one finds high-frequency acoustics superimposed
over a much slower, quasi-incompressible flow field (see,e.g., [1, 2, 3, 4, 5]). If, on the other
hand, acoustic perturbations are of sufficiently long wave length, the material flow and the
sound waves evolve on the same time, but on disparate spatial scales (see [6]). These phys-
ically very different regimes amount to equally different asymptotic solutions. Thus, if one
is interested in exploring asymptotic results to improve numerical methods, it is necessary to
employ testing procedures that determine which particular asymptotic regime is valid for the
application at hand. The identification of multiple-space-scales asymptotic limit regimes by
means of discrete filtering operators is the topic of Subsection 4.1.

Subsection 4.2 describes the necessary steps needed to allow the computation of weakly
compressible flows using the principal machinery of standard incompressible flow solvers.
The asymptotic analysis developed earlier in Section 2 shows that in weakly compressible
flows the pressure plays a multiple role as a thermodynamic variable, as an acoustic mode
amplitude, and as a an agent (sometimes called a ‘Lagrangian multiplier’) guaranteeing that,
in the limit of zero Mach number, the velocity field satisfies an elliptic divergence constraint.
These three roles are attributed to the leading, first, and second-order solutions in a power-
series expansion of the pressure in terms of the Mach number. Only the second-order pressure
survives in the limit of zero Mach number, and this is the only pressure variable known
to a standard incompressible flow solver. An extension of such a method to weakly com-
pressible flows requires the introduction of additional pressure variables, which account for
global thermodynamic pressure changes and acoustic waves. Thus, this subsection describes
the development of a Multiple Pressure Variable (MPV) scheme for low-Mach-number flows
from the basis of a standard incompressible flow solver. Applications include examples show-
ing baroclinic vorticity generation through long-wave acoustic pulses and a thermally driven
cavity flow.

Subsection 4.3 describes the extension of conservative finite-volume methods for com-
pressible flows to zero Mach number from [7]. The key ingredients of this extension are
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(i) again the introduction of multiple pressure variables and (ii) a semi-implicit determina-
tion of numerical fluxes of mass, momentum, and energy. This procedure involves explicit
estimates for the convective flux contributions based on the original upwind machinery of the
underlying compressible flow solver and elliptic corrections that are derived directly from low-
Mach-number asymptotics. Applications include ‘falling droplets’ (motion of high-density
blobs of fluid under gravitational forces) and a model for thermo-acoustic devices.

Subsection 4.4 reconsiders the extension of a standard numerical method designed for
the compressible Euler equations. Emphasis is now onsmall, but finiteMach numbers. In
particular, the techniques described in Section 4.1 for the identification of an asymptotic
regime through discrete filters is used here to automatically adjust the (small) numerical
reference parameter that represents the low-Mach-number effects. A scheme is developed
that allows a smooth transition from very weakly compressible to fully compressible flows
with shock waves. This transition is associated with a change of the Mach-number reference
parameter from very small values, where numerical flux corrections similar to those described
in Section 4.3 are applied, to unity, in which case the scheme automatically reduces to the
original underlying compressible flow solver. Examples include the passage of a long-wave
acoustic pulse over a gas layer with high frequency, large-amplitude density variations and the
nonlinear steepening of an acoustic wave into a weak shock.

The aim in Subsection 4.5 is to use results of Section 2.2 in distinguishing between terms
related to pure convection and terms related to the fast wave speeds in magneto-hydrodynamics.
As in the case of the Euler equations the idea behind the approach is to obtain a splitting
of the system that enables one to treat the convection terms, which remain hyperbolic in
the limit, and the fast-wave-speed terms, which become elliptic, with different numerical
methods optimized for the respective task. In MHD there are additional hyperbolic waves
besides the acoustic ones. As a consequence, there are two characteristic numbers, the Mach
and Alfvén numbers, which characterize the ratio of a typical flow velocityvs. the respective
hyperbolic wave speeds. New split systems are proposed that are used in our current work for
the construction of efficient and accurate numerical methods.

In Section 5 we present conclusions and an outlook on current and future work.

2. Asymptotic analyses

2.1. LOW-MACH-NUMBER ASYMPTOTICS FOR COMPRESSIBLE FLUID FLOWS

In this section we discuss low-Mach-number asymptotics in a sufficiently general fashion to
include low-speed reacting flows. Much of the discussion will in fact be motivated by applica-
tions from combustion, although, by applying suitable simplifications, all the analytical steps
carry over to non-reacting flows as well. We begin by introducing the governing equations
and some general considerations regarding scaling and non-dimensionalization. This subsec-
tion will also define the non-dimensional scalar parameters that will allow us to identify the
relevant asymptotic limit regimes.

2.1.1. Governing equations

Unscaled formulation.The full governing equations of gas-phase combustion with as little
approximation as probably doable can be found in comprehensive textbooks on combustion
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theory, such as [8]. Here we shall consider a simplified system only, so that the essential lines
of thought can be worked out straightforwardly.

The simplified system to be discussed here consists of the conservation equations for mass,
momentum and energy

(ρ)t +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ◦ v + 1p)+∇ · τ = 0,

(ρe)t +∇ · (v[ρe + p])+∇ ·
(
jT + τ · v +

nspec∑
i=1

(1H)ij i

)
= 0.

(2.1.1)

Hereρ, v, p, e are the mass density, fluid flow velocity, pressure, and total energy per unit
mass, respectively, andτ , j T , j i denote the molecular transport of momentum, heat, and of
the mass of theith species. These transport terms and the pressure are related to the mass,
momentum, energy and species densitiesρ, ρv, ρe, ρYi through the caloric equation of state

ρe = p

γ − 1
+ 1

2
ρv2+

nspec∑
i=1

(1H)iρYi (2.1.2)

and the transport models

τ = −µ (∇v + (∇v)T )− η(∇ · v)1,
jT = −κ ∇T ,
j i = −Di∇Yi.

(2.1.3)

The temperatureT is related to pressure and density via the thermal equation of state

T = p

ρR
. (2.1.4)

The quantitiesγ,R,µ, η, κ,Di, (1H)i are the isentropic exponent, the ideal gas constant,
the shear and bulk viscosities, the heat conductivity, the species diffusivities and the species’
formation enthalpies, respectively. All of these are assumed constant throughout this text.

The species mass fractionsYi satisfy the inhomogeneous balance laws

(ρYi)t +∇ · (ρYiv)+∇ · j i = ρωi, (i = 1 . . . nspec), (2.1.5)

whereωi = ωi(p, ρ, {Yj}Mspec

j=1 ) is the net production rate of speciesi per unit mass of the gas
mixture. Whennspecactually denotes the total number of chemical species in the system, then
the sum of all equations in (2.1.5) leads back to the mass conservation equation in (2.1.1)1 and
yields a constraint for the rate expressions

nspec∑
i=1

ρωi = 0. (2.1.6)

In this case, the mass conservation equation or one of the species balances are redundant.
In order to specify a single solution to these equations uniquely one must provide suitable

initial and boundary conditions determining the solution behavior at some start-up time and
close to the physical boundaries of the system. Since these conditions define the distinctions
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between all systems that follow the same set of governing equations, we cannot exhaustively
discuss them here.

Non-dimensionalization, similarity and scaling.Within the above governing equations one
can identify four fundamental physical dimensions{χi}4i=1: Length L, Time T , MassM
and Temperature2. Each physical quantityφj that appears in the governing equations has
a physical dimension that is a product of these fundamental ones, so that

Dim(φj ) =
4∏
i=1

(χi)
bij . (2.1.7)

To name a few examples,

Quantityφ Physical dimensionDim(φ)

ρ M/L3

v L/T

e L2/T 2

p M/(LT 2)

R L2/(2T 2)

. (2.1.8)

Once a system of units is chosen based on which these fundamental dimensions shall be
measured, each of the physical quantities and coefficients in the governing equations can be
quantified by a sole number. The familiar SI-system is one example, where(L,T ,M,2) are
measured in terms of (Meter, m; Second, s; Kilogram, kg; Kelvin, K). Knowing a quantity’s
physical dimension and the underlying system of units, one can always transform these non-
dimensional numbers back into measurable physical values. Obviously, there is a one-to-one
map between any two different systems of units, so that the exact solutions of the governing
equations will not depend on which system is chosen.

As they stand, the governing equations given above do not reveal anything besides what
was built into them from the start: conservation of mass, momentum and energy (2.1.1),
conversion of one set of chemical species into another (2.1.5), transformations between var-
ious forms of energy (2.1.2) and some thermodynamic relations between the state quantities
(2.1.4). To obtain a somewhat improved intuition about possible solutions one may study
classes of solutions distinguished by some particular global mathematical characterization.

For any given solution of the equations one can identify ‘characteristic values’
[
φj,ref

]N
j=1

of the total ofN physical quantities in the system which roughly describe their orders of
magnitude throughout the solution or at least during a certain time interval and within a
selected region in space. These dimensional characteristic quantities can be combined into
non-dimensional characteristic numbers

5k =
N∏
j=1

(
φj,ref

)ajk , (2.1.9)

with the exponentsajk chosen so as to guarantee that the5k do not have a physical dimension
as will be explained shortly.
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These numbers are extremely useful as they provide a comparison between various quanti-
ties that may have the same physical dimension but very different physical origin. An example
is the Mach number

M := |vref|
cref

, (2.1.10)

which compares a typical flow velocity with a characteristic speed of sound or, equivalently,
the momentum flux due to convection with the momentum flux due to pressure forces (note
that the speed of sound isc2 = γp/ρ. Here we simply takec2

ref := pref/ρref, i.e., M2 =
ρrefu

2
ref/pref).

For the non-dimensional5’s to be actually non-dimensional, all the physical dimensions
have to cancel exactly in the product. Using (2.1.7), we may rephrase this statement as

Dim(5k) =
N∏
j=1

[
4∏
i=1

(χi)
bij

]ajk
=

4∏
i=1

 N∏
j=1

(χi)
bij a

j
k

 = 4∏
i=1

(χi)

[
N∏
i=1

bij a
j

k

]
≡ 1 . (2.1.11)

For this equation to hold, the respective powers of each of the fundamental dimensionsχi
must vanish independently, so that

N∑
j=1

bij a
j

k ≡ 0 (i = 1 . . . 4, k arbitrary) . (2.1.12)

These are four linear constraints on theN-tuplesak = (a1
k , . . . , a

N
k ), which therefore span

a total space of dimensionN − 4. This, in turn, is equivalent to the existence of a set of
N−4 independent characteristic numbers{5k}N−4

k=1 , and we arrive at the famousBuckingham’s
π -theorem.

The existence of these non-dimensional numbers has very deep and important conse-
quences for the set of all possible solutions of the governing equations. To be more specific we
introduce the reference quantities(ρref, pref, vref) for density, pressure and velocity,(tref, `ref)

for the time and space coordinates,(ωref) for chemical reaction rates and(µref, κref,Dref, Rref,
(1H)ref) for the various parameters in the constitutive equations. Next we define new depen-
dent and independent variables,

ρ ′ = ρ

ρref
, p′ = p

pref
, v′ = v

vref
, T ′ = T

pref/(ρrefRref)
, e′ = e

pref/ρref
(2.1.13)

and

x′ = x

`ref
, t ′ = t

tref
. (2.1.14)

The governing equations are now transformed into their scaled analogues (with the prime
superscript dropped for convenience of notation):

Conservation Laws:

Sr(ρ)t +∇ · (ρv) = 0,

Sr(ρv)t +∇ · (ρv ◦ v + 1

M2
∇p)+ 1

Re
∇ · τ = 0,

Sr(ρe)t +∇ · (v[ρe + p])+∇ ·
(

1

Pe
j T +

M2

Re
τ · v + Q

Sc

nspec∑
i=1

δhij i

)
= 0;

(2.1.15)
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Species Balances:

Sr(ρYi)t +∇ · (ρYiv) = − 1

Sc
∇ · j i + Daρωi (i = 1 . . . nspec); (2.1.16)

Caloric Equation of State:

ρe = p

γ − 1
+M2 1

2
ρv2+Q

nspec∑
i=1

δhi ρYi; (2.1.17)

Thermal Equation of State:

T = p

ρ
; (2.1.18)

Transport Models:

τ = −µ′ (∇v + (∇v)T )− η′ (∇ · v)1,
jT = −κ ′∇T ,
j i = −D′i∇Yi.

(2.1.19)

Notice that in (2.1.15), (2.1.17) we have introduced the scaled reaction enthalpies

δhi = (1H)i

(1H)ref
, (2.1.20)

and thatµ′ = µ/µref, κ
′ = κ/κref etc. in (2.1.19) could all be set to unity in case of constant

molecular transport coefficients.
The procedure of scaling the equations has led to a set of seven characteristic numbers:

Abbreviation Definition Name
Sr `ref/(trefvref) Strouhal number

M vref/
√
pref/ρref Mach number

Re ρrefvref`ref/µref Reynolds number

Pe ρrefvref`ref/(κref/Rref) Peclet number

Sc ρrefvref`ref/Dref Schmidt number

Da ωref`ref/vref Damköhler number

Q (1H)ref/(pref/ρref) Heat Release Parameter

. (2.1.21)

Notice that this number was to be expected following the earlier discussion in conjunction
with (2.1.11), (2.1.12). We have introducedN = 11 reference quantities to characterize the
magnitude of all terms and physical variables in the unscaled equations and ended up with
N − 4= 11− 4= 7 non-dimensional numbers.

Here are the key observations regarding the structure of solutions of the full governing
equations to be derived from the exercise of non-dimensionalization and scaling:

1. Given:
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• Initial and boundary conditions in terms of the scaled variables,

• A set of non-dimensional parameters (Sr, M, Re, Pe, Sc, Da, Q),

• The solution to the scaled governing equations (2.1.15) – (2.1.19),

Then:

• For any set of reference quantities(ρref, pref, vref, tref, `ref) and fluid specific parame-
ters (µref, κref,Dref, Rref, (1H)ref, ωref) that are compatible with the given values for
(Sr,M,Re,Pe,Sc,Da,Q), the fields obtained by reversing the scaling from (2.1.13), (2.1.14)
represent a valid solution to the original unscaled equations!

Thus:

• Each set (Sr,M,Re,Pe,Sc,Da,Q) defines a class of equivalent solutions, which differ
from each other merely by a scale transformation.

2. Close inspection of the scaled governing equations reveals that singularities arise when
one or more of the non-dimensional characteristic numbers approach zero or infinity.
Numerical flow simulation is a particular challenge in these regimes, as will be elucidated
by a number of examples throughout this text.

Remark:The set of non-dimensional characteristic numbers chosen above is not unique. In the
combustion and heat-transfer literature the Peclet and Schmidt numbers Pe and Sc are often
replaced with the Prandtl and Lewis numbers Pr= Pe/Re and Le= Sc/Pe, respectively.

Remark:The Strouhal number Sr is often set to unity when a set of scaled governing equations
is formulated. Considering its definition in (2.1.21), we observe that this choice implies the
characteristic time scale of flow field evolution to be the convection time scale`ref/vref. Even
though we will also adopt this choice below, this is neither necessary, nor is it meaningful in
all cases. Taking,e.g., the limit Sr→ 0 allows one to formulate the governing equations for
stationary flows.

2.1.2. Single-length, single-time-scale asymptotics

In most real-life applications, such as atmosphere-ocean flows, fluid flows in engineering
devices, etc., velocities are small compared with the speed of sound. This fact has profound
consequences for both the mathematical behavior of solutions to the governing equations from
Section 2.1.1 and their numerical approximate solutions. Physically, in the limit of arbitrar-
ily slow flow (or infinitely fast sound propagation) the elasticity of the gas with respect to
bulk compression becomes negligible and sound-wave propagation becomes unnoticeable.
Mathematically, as the Mach number M from (2.1.10) tends to zero, the pressure gradient
contribution in the momentum equations (2.1.15)2 becomes singular. In order to explore the
consequences of this singularity, we consider a formal asymptotic analysis, closely following
[9, 6].
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A systematic derivation of the governing equations for zero-Mach-number combustion has
been given by Majda and Sethian [9]. The formulation adopted below, which explicitly focuses
on the conservation equations for mass, momentum and energy, has been introduced in [6]
in conjunction with a multiple-length-scale, single-time-scale analysis. In [6, 7] the authors
exploit the asymptotics to derive fully conservative numerical methods for low- and zero-
Mach-number flows. In Section 3 below, one of the authors describes a rigorous framework
for the formal asymptotics presented here with an emphasis on the physical background (see
also [10]).

In recounting these earlier results we restrict ourselves to the case of an ideal gas mixture
with a simple one-step reactionF → P , where the fuelF is turned into the product speciesP .
The chemical-energy conversion rate then is QρωF , where Q quantifies the specific reaction
enthalpy of the fuel species andρωF its production density. Under these conditions we need to
describe the time evolution of only the fuel mass fractionYF , using a single transport equation
of the type described in (2.1.16).

The asymptotic solutionAnsatz

p = p(0)(x, t)+Mp(1)(x, t)+M2p(2)(x, t)+ o(M2),

v = v(0)(x, t)+Mv(1)(x, t)+ o(M),
ρ = ρ(0)(x, t)+Mρ(1)(x, t)+ o(M),
YF = Y (0)F (x, t)+MY (1)F (x, t)+ o(M)

(2.1.22)

is introduced into the dimensionless governing equations (2.1.15)–(2.1.16). Following stan-
dard procedures of asymptotic analysis one obtains a hierarchy of equations for the various
expansion functionsp(i), v(i), ρ(i), Y (i)F by collecting all terms multiplied by equal powers of
the Mach number M and separately equating these to zero. The momentum equations to orders
M−2 and M−1 become

∇p(0)(x, t) = 0, ∇p(1)(x, t) = 0. (2.1.23)

One concludes thatp(0) andp(1) depend on time only in this regime of length and time scales,
so that

p(0) ≡ P (0)(t) and p(1) ≡ P (1)(t). (2.1.24)

The continuity and energy equations at leading order are then(
ρ(0)

)
t
+∇ · (ρ(0)v(0)) = 0, (2.1.25)

1

γ − 1

dP (0)

dt
+∇ · (H(0)v(0)

) = ( 1

Pe
∇ · (λ∇T (0))+ Da Q(ρωF )

(0)

)
. (2.1.26)

where

H(0)(t) = γ

γ − 1
P (0)(t). (2.1.27)

To arrive at (2.1.26), insert the expansion (2.1.22) into the energy conservation law (2.1.15)3

and take into account that, according to (2.1.17), the kinetic energy is smaller than the thermal
energy for M� 1 by a factor of M2. The contribution of the viscous forces to the energy
budget, represented by the term∇ · (M2

Re τ · v), will appear for the first time in the energy
equation at orderO(M2).

The momentum equation at order M0 reads
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ρ(0)v(0)

)
t
+∇ · (ρ(0)v(0) ◦ v(0))+∇p(2) = − 1

Re
∇ · τ (0). (2.1.28)

Notice the change in structure of these equations: the pressure-evolution equation doesnot
determine the pressure variablep(2) appearing in the momentum equation! The appropriate in-
terpretation, corresponding directly to the theory of incompressible flows, is that the equation
for P (0) from (2.1.26) is a divergence constraint for the leading-order energy flux,i.e.,

∇ · (H(0)(t) v(0)
) = − [ 1

γ − 1

dP (0)

dt
−
(

1

Pe
∇ · (λ∇T (0))+ DaQ(ρωF )

(0)

)]
(2.1.29)

and that the second-order pressurep(2) is responsible for guaranteeing that constraint to be
fulfilled. A useful and more familiar interpretation of this equation results from using explic-
itly thatH(0)(t) = γP (0)(t)/(γ −1) is a function of time only for the present equation of state
and deriving a

velocity divergence constraint

∇ · v(0) = − 1

γP (0)

[
dP (0)

dt
− (γ − 1)

(
1

Pe
∇ · (λ∇T (0))+ DaQρωF

)]
. (2.1.30)

We observe that the velocity divergence is driven by chemical-energy conversion and energy-
transport effects: Chemical-heat release, heat conduction and global pressure changes conspire
to induce a divergence field for the velocity. As a direct consequence we derive from the mass-
continuity equation (2.1.25) an equation that describes the temporal evolution of the density
along particle paths

Dρ

Dt
:= ∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v. (2.1.31)

To summarize, the energy conversion and transport processes drive the divergence of the en-
ergy flux, which is related to the velocity divergence. The latter, in turn, leads to compression
or expansion of individual mass elements and thus to density variations of individual particles.
The original interpretation of (2.1.29) as an energy-flux divergence constraint proves to be
useful in the construction of energy conserving finite-volume methods, (see [7, 11]).

Equations (2.1.25)–(2.1.28) form a closed system, provided the temporal evolution of the
leading-order pressureP (0) is known and the state dependence of the reaction rateρωF is
given. For combustion under atmospheric conditionsP (0) equals the atmospheric ambient
pressure and is constant in time. For combustion in a closed chamber we explore the fact that
P (0) is homogeneous in space, integrate (2.1.30) over the total flow domain, use Gauß’ theo-
rem to replace the divergence integrals with boundary integrals and obtain a global pressure
evolution equation:

dP (0)

dt
= 1

�

[
−
∮
∂V

(
γP (0)v − γ − 1

Pe
λ∇T (0)

)
· ndσ+Da

∫
V

(γ −1)Q(ρωF )
(0)dV

]
, (2.1.32)

wheren is the outward-pointing unit normal at the boundary and� = ∫
V

dV is the total
volume of the domain of integrationV . Given appropriate velocity and thermal boundary
conditions, all changes of the background pressure are thus related to the overall chemical-
energy conversion within the domain.
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The structure of the above equations is similar to that of incompressible, non-reactive
flow, in that there is convection, diffusion, and an explicit velocity-divergence constraint.
Thus, appropriate extensions of incompressible flow solvers should, in principle, be able to
handle zero-Mach-number reactive flows as well. See [12, 13, 14, 15] for reviews of typical
developments based on thisansatz.

2.1.3. Multiple-length, single-time-scale analysis

A number of interesting engineering applications are characterized by the presence of low-
frequency flow-acoustic interactions. A prominent example is the ‘rumbling noise’ generated
in the exhaust systems of large burners. These oscillations can become quite severe when
eigenfrequencies of the exhaust system are excited. The origin of these resonances are inter-
actions of a small scale, quasi-incompressible (turbulent) inflow with low-frequency sound
waves that have the same time scale as the influx, but much longer wave lengths. A formal
asymptotic analysis of this situation using multiple-scales techniques has been presented in [6]
and shall be reviewed briefly in this section. For simplicity of exposition we restrict ourselves
here to the non-reactive Euler equations for an ideal gas with constant specific-heat capacities.

We consider acoustic oscillations having the same time scale as the underlying small scale,
quasi-incompressible flow. Due to the fast propagation of sound waves, their characteristic
wavelength must then be larger by a factor of order 1/M, which is the ratio of a typical sound
speed over a characteristic flow velocity. A suitable asymptotic solutionansatzreads

p = p(0)(x,Mx, t)+Mp(1)(x,Mx, t)+M2p(2)(x,Mx, t)+ o(M2),

v = v(0)(x,Mx, t)+Mv(1)(x,Mx, t)+ o(M),
ρ = ρ(0)(x,Mx, t)+Mρ(1)(x,Mx, t)+ o(M).

(2.1.33)

The ansatzis introduced into the dimensionless governing equations (2.1.15)–(2.1.16). In
doing so, the following generalized differentiation rule must be used in order to account for
the multiple-scale expansion in the spatial coordinate

∇ = ∇x +M∇ξ , ξ := Mx. (2.1.34)

Here∇x,∇ξ denote gradients including the partial derivatives w.r.t.x, ξ at fixed (t, ξ) and
(t, x), respectively.

Following standard procedures of multiple-scales asymptotics, we require that the sums
of all terms in the expanded governing equations that multiply the same powers of the Mach
number add up to zero. (Notice that this is not a trivial step, as these terms themselves depend
implicitly on the Mach number through their argumentξ = Mx. Consult Section 3 for a
detailed discussion and mathematical justification of this subtle but important point.) The
result for the momentum balances at orders M−2 and M−1 is

∇xp(0)(x, ξ , t) = 0, ∇xp(1)(x, ξ , t) = −∇ξp(0)(x, ξ , t). (2.1.35)

One first concludes thatp(0) ≡ P̃ (0)(ξ , t). Next one integrates the second equation inx and,
following standard sub-linear growth arguments (see Section 3), concludes that

p(0) ≡ P (0)(t) and p(1) ≡ P (1)(ξ , t). (2.1.36)
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The continuity and energy equations at leading order are unchanged from (2.1.25) and (2.1.26),
except that the∇-operator is to be replaced with∇x and that all terms in (2.1.26) due to
chemistry and heat conduction may be dropped here for simplicity.

The first major change appears in the momentum equation at order M0, which now reads(
ρ(0)v(0)

)
t
+∇x ·

(
ρ(0)v(0) ◦ v(0))+ ∇xp(2) = −∇ξP (1). (2.1.37)

The second-order pressurep(2) still is responsible for guaranteeing compliance with anx-
scale divergence constraint from the leading-order energy equation (2.1.26), (2.1.30), but there
is now a large scale driving force due toP (1). We will see below that this term represents the
effects on the momentum balance of long wavelength acoustics.

As before we explore next the fact thatP (0) is homogeneous in order to derive an equation
for its time dependence. First we integrate (2.1.30) over a finite sub-domain inx at fixed time
and fixedξ , use Gauß’ theorem to replace the divergence integrals with boundary integrals
and obtain

dP (0)

dt
= − 1

�

∮
∂V

γ P (0)v · n dσ, (2.1.38)

where, as before,n is the outward-pointing unit normal at the boundary and� = ∫
V

dV is the
total volume of the domain of integrationV . The argument now differs from the previous one
for the single scale case as follows: Since the total flow domain is large enough to cover long-
wavelength acoustics represented by orderO(1) values ofξ , for every fixedξ the relevant
domain of definition inx is infinite (i.e., of orderO(1/M) as M→ 0). Thus, we may let the
boundary∂V of V tend to infinity. Requiring that the flow velocities on the boundary remain
bounded or, at least, grow sub-linearly with|x| as|x| → ∞, we conclude that

lim
�→∞

[
1

�

∮
∂V

γ P (0)v · ndσ

]
= 0, (2.1.39)

due to the vanishing surface-to-volume ratio of the domainV . (A precise formulation would
have to specify in more detail how the domain boundary is spread to infinity, so that a van-
ishing surface-to-volume ratio is actually guaranteed. We skip these details here as they are
part of the standard procedures of multiple-scales asymptotics. See, however, also Section 3.)
Obviously, (2.1.39) implies that

P (0) = P∞ ≡ constant (2.1.40)

on the time scales considered here. To close the obtained equations, it is necessary to derive
additional equations that determine the time evolution of the first-order long-wavelength pres-
sure contributionP (1)(ξ , t). To this end we integrate the momentum equation from (2.1.37) in
x over a domainV as done before for the energy equation and again use the sub-linear growth
condition. Similarly, we proceed for the first-order energy equation, [6], and find(

ρ(0)v(0)
)
t
+ ∇ξP (1) = 0,(

P (1)
)
t
+ ∇ξ ·

(
γP∞v(0)

)
= 0,

(2.1.41)

whereρ(0)v(0)(ξ , t), v(0)(ξ , t) denote the small-scale averaged momentum and velocity fields,
respectively.
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The most striking conclusion from this analysis is that there is a mutual and non-trivial
feed-back between the large and small scale flow features in the presence of small-scale, large
amplitude density fluctuations,i.e., in the general case ofρ(0) = ρ(0)(x, ξ , t),∇xρ(0) 6= 0. In
this case, the change of momentum induced by∇ξP (1) in (2.1.37) will lead to large velocity
changes for low density mass elements and small velocity changes for heavy ones. The result
is the so-called baroclinic vorticity generation. This is a manifestation of the generation of
small-scale structures by long-wave acoustic pressure gradients in the presence of small-scale
density fluctuations.

We consider, on the other hand, (2.1.41) and notice that the momentum equation involves
the time derivative of the small-scale averagemomentum, while the energy-flux term in the
second equation contains theξ -divergence of the small-scale averagedvelocity field. As a
consequence, in presence of non-trivial small-scale fluctuations of the densityρ(0), these
equations are not closed, as they involve the unknownsP (1), ρ(0)v(0) andv(0). We can reveal
the consequences by decomposing the velocity and density fields into mean and fluctuation
according to

v(0) = v(0) + ṽ(0), ρ(0) = ρ(0) + ρ̃(0) (2.1.42)

and rewriting the averaged momentum as

ρ(0)v(0) = ρ(0) v(0) + ρ̃(0)ṽ(0). (2.1.43)

This leads to the revised formulation of the long-wave dynamics(
v(0)

)
t
+ 1

ρ(0)
∇ξP (1) = − 1

ρ(0)

(
ρ̃(0)ṽ(0)

)
t
,(

P (1)
)
t
+γP∞∇ξ · v(0) = 0.

(2.1.44)

In the derivation we have anticipated that(ρ(0))t = 0, which is an immediate consequence
of the small-scale averaged leading-order continuity equation (2.1.25). We observe that the
left-hand side of this system represents long-wavelength linear acoustics with variable sound
speed, the latter being due to theξ -dependence ofρ(0)(ξ). The right-hand side of the first
equation in (2.1.44) is present only if there are long-wave correlations of the small-scale fluc-
tuations of velocity and density. In this case there is a non-negligible effect of the small scales
onto the long-wave acoustics. Together with the previous observations regarding baroclinic
vorticity generation this is part of a mutual interaction of small and large scales.

For a more detailed description of the mathematical framework of the multiple-scales
techniques used here see Section 3. For developments of new numerical techniques on the
basis of this analysis, see Sections 4.2, 4.3.

2.2. THE MAGNETO-HYDRODYNAMIC -EQUATIONS (MHD-EQUATIONS)

The equations of ideal MHD are

∂

∂t


ρ

ρv

B

ρe

+∇ ·


ρv

ρv ◦ v + (p + 1
2B · B)I − B ◦B

v ◦B − B ◦ v
(ρe + p + 1

2B ·B)v · B)B

 = 0 (2.2.1)
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with the additional constraint∇ · B = 0. As in the equations governing compressible gas
dynamics,ρ, v, e and p are the density, the velocity, the total energy and the pressure,
respectively.B is the magnetic field. If the plasma behaves like an ideal gas, pressure and
total energy are related via a state equation

ρe = p

γ − 1
+ 1

2
ρv · v + 1

2
B · B.

Like the equations of gas dynamics, the MHD equations can be written as evolution equa-
tions for the primitive variablesρ, v,B, p. Let us consider, for simplicity, one-dimensional
solutions in a three-dimensional space. In a Cartesian frame of reference withx = (x, y, z),
u = (u, v,w), B = (B1, B2, B3) and∂/∂y = ∂/∂z = 0 the primitive equations read

ρt + uρx + ρux = 0 ,

ut + uux + 1

M2

px

ρ
+ 1

2Av2ρ
(B ·B)x = 0 ,

vt + uvx − B1

Av2ρ
B2x = 0 ,

wt + uwx − B1

Av2ρ
B3x = 0 ,

B2t + uB2x + B2ux − B1vx = 0 ,

B3t + uB3x + B3ux − B1wx = 0 ,

pt + upx + γpux = 0 .

(2.2.2)

Here we have introduced the scaling described in Section 2.1 and an additional reference value
Bref for the magnetic field. Since there is an additional equation for the magnetic field, a new
characteristic number appears. This is the Alfvén number Av, the ratio between flow velocity
and speed of the magneto-sonic waves,cA,ref:

Av := |vref|
cA,ref

= |vref|√
B2

ref
ρref

.

2.2.1. The case of small Mach number

For the case of small Mach number but finite Av, the asymptotic expansion described in Sec-
tion 2.1 can be extended to the MHD equations. The asymptotic multi-scaleansatz(2.1.33),
completed by

B(x, t;M) = B(0)(x,Mx, t) +MB(1)(x,Mx, t) + o(M), (2.2.3)

leads to the following zero-Mach-number limit equations:
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ρt + ρux + ρxu = 0 ,

ut + uux + 1

ρ
p(2)x +

1

2Av2ρ
(B · B)x = −1

ρ
p
(1)
ξ ,

vt + uvx − 1

Av2ρ
B1B2x = 0 ,

wt + uwx − 1

Av2ρ
B1B3x = 0 ,

B2t + B2ux − B1vx + uB2x = 0 ,

B3t + B3ux − B1wx + uB3x = 0 ,

p
(0)
t + γp(0)ux = 0 .

(2.2.4)

As in Section 2.1, it turns out that the first three terms of the pressure expansion

p = p(0) +Mp(1) +M2p(2) + o(M2) (2.2.5)

carry different physical meanings;p(0) andp(1) represent the thermodynamic pressure and the
amplitude of acoustic perturbations, respectively. Their evolution equations are analogous to
(2.1.36) and (2.1.38)–(2.1.41). The second-order pressurep(2) is implicitly defined by (2.2.4).
The main difference with respect to the case of pure gas dynamics is that, here, magnetic field
and velocity field are coupled. Therefore, the magnetic field appears in the elliptic equation
for p(2). The one-dimensional analysis can be extended to the multidimensional case in a
straightforward way.

The main result of the analysis is that the presence of the magnetic field does not break the
structure of the zero-Mach-number limit equations. Therefore, numerical methods for low-
Mach-number finite-Alfvén-number inviscid MHD can be developed on the same basis as
numerical methods for the low- Mach-numbers Euler equations. One such method is discussed
in Section 4.5.

2.2.2. The case of small Alfvén number

We consider now the distinguished limit in which the magneto-sonic waves are much faster
than the flow, Av→ 0, but the Mach number is finite. The asymptoticansatznow reads

U(x, t;Av) = U(0)(x,Avx, t)+ AvU(1)(x,Avx, t)+ Av2U(2)(x,Avx, t) + o(Av2) (2.2.6)

withU = {ρ, v, p,B}. Introducing thisansatzinto the one-dimensional MHD equations (2.2.2)
and collecting the terms which multiply the same powers of the Alfvén number leads to the
basic equations of MHD for zero Alfvén number and to a set of perturbation equations. Using
the same techniques described in the analysis of the hydrodynamic equations, small-scales
averaging and standard sub-linear growth constraints, one obtains the following results:

Due to the singular terms in the Alfvén number appearing in the MHD equations, the
leading-order magnetic field becomes spatially homogeneous. The first-order magnetic field
is homogeneous inx but supports non-trivial structures on the large scaleξ :

B
(0)
2 = B(0)2 (t), B

(1)
2 = B(1)2 (ξ, t) , (2.2.7)
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B
(0)
3 = B(0)3 (t), B

(1)
3 = B(1)3 (ξ, t) . (2.2.8)

The MHD equations for zero-Alfvén-number limit read

ρt + ρux + ρxu = 0 ,

ut + uux + 1

M2

1

ρ
px + 1

ρ
(B

(0)
2 B

(2)
2,x + B(0)3 B

(2)
3,x) = −

1

ρ
(B

(0)
2 B

(1)
2,ξ − B(0)3 B

(1)
3,ξ ) ,

vt + uvx − 1

ρ
B1B

(2)
2,x = 1

ρ
B1B

(1)
2,ξ ,

wt + uwx − 1

ρ
B1B

(2)
3,x = 1

ρ
B1B

(1)
3,ξ ,

pt + γpux + pxu = 0 .

and one finds the following additional coupling constraints between velocity and magnetic
field

B
(0)
2,t + B(0)2 ux − B1vx = 0 ,

B
(0)
3,t + B(0)3 ux − B1wx = 0 ,

(2.2.9)

We remark that, according to (2.2.7) and (2.2.8),B
(i)

2 , B
(i)

3 , i = 0,1, are constant inx.
Hence (2.2.9) may be interpreted as constraints for the velocity components. The structure
here is much more complicated than in the zero-Mach-number limit. It becomes even more
complicated in the multidimensional case. Evolution equations for long-wavelength magneto-
acoustics are obtained by averaging the velocity and magnetic-field perturbation equations.
A further interesting regime would be described by the limit M= c Av with c = O(1) as
M → 0. As we will see in the next section, such a distinguished limit leads to new interactions
between the fast waves that are not captured by any sequential limit or by any two-parameter
expansion!

2.3. SLOW ATMOSPHERIC MOTION

Understanding and computing motions in the atmosphere is particularly challenging because
of the multitude of physical processes and of the different space and time scales involved. In
spite of its physical complexity and variety, however, atmospheric motion is confined to a very
special regime. The Mach number M varies from zero at rest to about 0·3 in fast jet streams,
hurricanes and tornadoes.

As seen in Section 2.1, in the M→ 0 limit the governing equations for compressible (air)
flow become singular. Due to this singularity pressure differences as small as M2 can generate
O(1) accelerations of the horizontal winds, while the pressure forces are in an almost exact
balance (see Equation (2.1.28)). In fact, the problem of extracting the ‘correct’ net effect
that modifies an almost perfect balance is a very common one in weather forecasting, see,
e.g., [16 p. 187], and both theoretical and numerical investigations of atmospheric motion
make use of related approximatemodels. These models achieve a simplification of the govern-
ing equations by assuming some kind of balance,e.g., hydrostatic,geostrophic, Boussinesq,
anelastic, pseudo-incompressible. For comprehensive accounts of the matter the reader may
want to consult the classical textbooks by Gill [17] and Pedlosky [18], or the monographs by
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Zeytounian [19, 20]. Note that Zeytounian uses techniques of asymptotic analysis that are very
close to those employed in the present work, albeit with the aim ofasymptotic modelling(de-
riving simplified asymptotic equations), instead of guiding the construction of new numerical
techniques.

In spite of the outstanding role of approximate models, modern computational approaches
in numerical weather forecasting turn back to the full governing equations, see [21]. The
reasons are:

1. The full equations are believed to allow a better description of real motions than approxi-
mate models do.

2. In contrast to approximate models, the full equations are valid on a wide range of scales.
Therefore, numerical methods based on the full equations can be naturally coupled with
local-mesh-refinement techniques for,e.g., regional weather forecasting.

3. Both numerical weather forecasting and climate research need fast algorithms. If one
knows how to avoid time-step restrictions due to fast modes, the computational cost
of integrating the full equations can be significantly lower than the cost of solving the
equation of,e.g., an anelastic model.

When attempting to compute numerical solutions of the full compressible equations at
different resolutions one has to face two major problems. 1) Standard methods exhibit a
breakdown of both accuracy and efficiency in the low-Mach-number regime, see [22], [23],
[6], [24], [25]. 2) As the grid size changes, one has to adjust theparameterizationsof the sub-
cell processes. Such parameterizations have been designed (and are considered to be valid)
for a given scaling or a well defined grid size. Tautologically, there is very little knowledge
on how parameterizations depend on the grid size. It has been observed in climate research
and weather forecasting that, for a given model, a simple grid refinement by a factor of two
may have drastic impacts on the computed solution and may thus require a complete new
adjustment of parameters in the sub-grid scale models.

We propose multiple-scale low-Mach-number low-Froude-number asymptotic analysis as
a general framework for understanding the motion in the atmosphere on space scales rang-
ing from a few meters to thousands of kilometers. The theory, detailed in [26], provides a
consistent picture of slow atmospheric flows and turns out to be the natural framework in
which approximations, traditionally obtained on the basis of simplifying assumptions orad
hocscaling arguments, can be derived. The analysis yields interesting implications for discrete
methods aiming at the numerical computation of atmospheric motions as,e.g., in numerical
weather prediction or climate modeling. There are two kinds of implications. On one hand
one finds side constraints on parameterizations of unresolved physical processes such as
turbulent heat transport or velocity boundary conditions. On the other hand, the asymptotic
analysis provides guidelines for consistently ‘filtering’ the equations and suggests that ‘sin-
gular dynamic-range problems’, such as the multiple-pressure problem for low-Mach-number
flows from Section 2.1, can be overcome by the introduction of suitable multiple variables
that mimic the asymptotic decomposition of the field quantities.

The analyses presented below are designed to support the construction of numerical inte-
gration techniques. Thus, we use asymptotics in order to reveal singular behaviouron the
numerically resolved length and time scales. Importantly, these scales do not necessarily
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match the length and time scales that a meteorologist or oceanographer would ultimately
be interested in. For example, in the near future one may expect horizontal numerical grid
resolutions of 5 km or less and numerical time steps on the order of minutes or less. In contrast,
the synoptic scales of weather dynamics in the mid-latitudes involve hundreds to thousands
of kilometres and time scales up to several hours or days. Our primary interest here is in the
much shorter, numerically resolved scales, and this is why some of our results may appear not
to be in line with classical results of theoretical meteorology [17, 18] or asymptotic modelling
[19, 20] at a first glance. We emphasize, however, that those results can be recovered by
systematically employing multiple-scales asymptotics. With the present multiple-space-scale
analyses we do already recover some of the classical results, while we hope to provide a
completely consistent picture based on both multiple-time and multiple-spacescale analyses
elsewhere in the near future.

2.3.1. Scaling, equations of motion

An atmosphere is said to be in hydrostatic balance when the vertical pressure gradient balances
the force of gravity:∂p/∂z = −ρg. Letpref be a reference pressure (e.g.some mean sea-level
pressure). The scale heighthscale := pref/(ρrefg) represents the height over which pressure
changes of magnitudepref would occur in a constant density atmosphere in hydrostatic bal-
ance. It is a rough measure of the thickness of the atmosphere:hscale= O(10)km. We consider
hscale as our basic scale and use two-scale asymptotics to resolve much smaller horizontal
‘micro scales’ in oneansatzand to cover the much larger synoptic scales in another. The first
ansatzis designed to assess deep convective motions that may occur in cumulus clouds, while
the second analyses short-time dynamics on the large scales of weather patterns.

If pref, ρref, vref andlref := hscaleare taken as reference variables, the conservation laws for
mass, momentum and energy in a dry rotating atmosphere ([16], [17], [27]) read

ρt +∇‖ · (ρu)+ (ρw)z = 0,

(ρu)t +∇‖ · (ρu ◦ u)+ (ρuw)z + 1

M2
∇‖p + 1

Ro
ρ
(
u⊥S + iwC

) = Dρu,

(ρw)t +∇‖ · (ρuw)+ (ρw2)z + 1

M2
pz + 1

Fr2
ρg − 1

Ro
ρuC = Dρw,

(ρe)t +∇‖ · ((ρe + p)u)+ ((ρe + p)w)z = Dρe,

(2.3.1)

with the equation of state

p = (γ − 1)

(
ρe − 1

2
M2ρv · v − M2

Fr2
ρgz

)
. (2.3.2)

We are considering a simplified geometrical setup in which the acceleration of gravity acts in
the vertical directionk of a Cartesian frame of reference of coordinatesx, y, z, unit vectors
i, j andk and velocity componentsu, v andw; u := iu + jv is called the horizontal wind
andu⊥ := −iv+ju. This frame of reference rotates with constant angular velocity� around
the axis defined by the unit vector� := jC + kS, whereC andS are the sinus and the
cosine of the latitude. They depend on the space coordinate but not on time. The operator∇‖
indicates differentiation in the horizontal directions andfz := ∂f/∂z. M := vref/

√
pref/ρref,

Fr := vref/
√
greflref and Ro := vref/(2�lref) are the Mach number, the Froude number and

the Rossby number, respectively. The termsDρu,Dρw on the right-hand side represent the
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effects of microscopical (molecular and/or turbulent) transport of momentum.Dρe accounts
for both microscopical transport of energy and for diabatic heating (latent heat and radiation).
These processes are usually parameterized by means of empirical relationships or models. The
above system of conservation laws implies the following evolution equation for the entropy
s = p/ργ :

st + u · ∇‖s + wsz = γ − 1

ργ

(
Dρe −M2(u ·Dρu + wDρw)

)
. (2.3.3)

2.3.2. Asymptotic ansatz

Let U be a shortcut for a solution component or a function of a solution of the governing
equations (2.3.1), such as the pressurep, densityρ or the velocity fieldv = u + wk. In
general,U depends on the horizontal coordinatex := ix + jy, the vertical coordinatez, the
time t , the singular perturbation parameter M and on other dimensionless parameters like the
Rossby and Reynolds numbers, Ro, Re, etc. We focus the attention on the behavior ofU as
M → 0, noticing that our choice of a reference length implies

Fr≡ M for lref := hscale. (2.3.4)

Assuming that all dimensionless parameters other than the Froude and Mach numbers are
fixed as M→ 0, we writeU = U(x, z, t;M) and consider an asymptotic expansion of the
solution in terms of the Mach/Froude number:

U(x, z, t;M) :=
∑
i=0

MiU (i)(η, x, ξ , z, τ, t). (2.3.5)

Here

η = 1

M
x, τ = 1

M
t (2.3.6)

are new small-scale horizontal and time coordinates, while

ξ = Mx (2.3.7)

represents a new large-scale horizontal coordinate in analogy with the multiple-scalesansatz
pursued in Section 2.1.3.

In particular, we will considerU(i) = U(i)(η, z, τ ) for the analysis of deep convection on
very small horizontal scales andU(i) = U(i)(x, z, t), U(i) = U(i)(x, ξ , z, t) for the analysis
on the meso and synoptic scales. In this paper we will not consider any multi-scaleansatzin
the vertical direction.

2.3.3. Results

Leading-order pressure and density.Leading-order pressure and density are found to be in
hydrostatic balance both at micro scale and at meso and synoptic scales:

p(0) = p(0)(z), ρ(0) = ρ(0)(z). (2.3.8)
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This result is not surprising. Indeed, it is common practice in numerical methods for at-
mospheric flows to solve forp − p(0), ρ − ρ(0) where the hydrostatic basic statep(0), ρ(0)

is more or less arbitrarily assigned. (see [21, pp. 39–41].)

Meso and synoptic scales: Vertical velocity constraint.A less trivial result is obtained by
averaging the continuity equation and the entropy equation (2.3.3) on the meso scales and
taking into account (2.3.8). One gets

∂z(ρ
(0)w(0)

x
) = ρ(0) 1

|Dx |
∫
∂Dx

u(0) · n dL,

w(0)
x
∂zs

(0) = ρ(0)−γ (γ − 1)D(0)
ρe

x

.

(2.3.9)

In the above systemw(0)
x

represents the average ofw(0) on thex-scales. The system shows
that, if ∂zs(0) 6= 0, the leading-order mass flux through∂Dx and the vertical rate of change of

the leading-order average heatingD(0)
ρe

x

are coupled by a simple relationship. In the special

case of zero mass flux the first equation requires∂z(ρ
(0)w(0)

x
) to be zero. Sinceρ(0) → 0

for z → ∞ andwx is bounded,w(0)
x

must be zero. In this case the source term of the
energy equation,D(0)

ρe must have a zero small-scale average. Thus we have found a constraint
that parameterizations of turbulent and radiative heating must fulfill in the limit of vanishing
Mach and Froude numbers.

For a stable stratification,∂zs(0) 6= 0, the entropy evolution equation yields the leading-
order (non-averaged) vertical velocityw(0) as a function of the heating termD(0)

ρe :

w(0) = ρ(0)−γ (γ − 1)D(0)
ρe

∂zs(0)
. (2.3.10)

Note that this isnot a form or consequence of the continuity equation. In fact, insertion of
(2.3.10) in the continuity equation yields a sequence of two-dimensional Poisson problems
for the second-order pressurep(2), one for each constantz-level. This pressure, in turn, is
needed to determine the leading-order horizontal wind.

Thus, the leading-order analysis yields the following picture of slow atmospheric motion
on meso and synoptic scales: Pressure and density are in hydrostatic balance to leading order;
the vertical wind has zero small-scale average or has an average that is coupled to the boundary
conditions for the horizontal wind; for stable stratifications the vertical wind is a function of
the source term of the energy equation and of the stability parameter represented by∂s(0)/∂z.
This functional dependence defines a divergence constraint for the horizontal wind and allows
its computation by layer-wise numerical integration of a set of quasi-two-dimensional Navier-
Stokes equations. This picture and, in particular, Equation (2.3.10) are consistent with the
results obtained on the micro scales where the interest is focused on deep convection. On
such scales the dynamics of vertical velocity and density perturbation are described by the
following system of partial differential equations (see [26]):

c(0)
2

ρ(0)
γ

Dρ̃(1)
η

Dτ
− ∂zs(0)w̃(0)η = −γ − 1

ρ(0)
γ D̃

(0)
ρe

η

,

Dw̃(0)
η

Dτ
+ ρ̃

(1)
η

ρ(0)
g = 1

ρ(0)
D̃
(−1)
ρw

η

.

(2.3.11)
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In this systemw̃(0)
η

represents the difference between the leading-order vertical velocity and
its small-scale average (i.e. the average over scales of orderO(Mhscale)). These equations
describe the well known oscillations of density perturbations in a stably stratified atmosphere
that are associated with the Brunt-Väisälä frequency and the additional driving of vertical
motions due to net heat sources. Notice that stationary solutions of this system on the (very
short)τ -time scale, with D/Dτ ≡ 0, reproduce the diagnostic vertical velocity equation from
(2.3.10) which was obtained in the single space, single time scale regime.

Anelastic and Boussinesq approximation.A popular approximation to the full continuity equa-
tion (2.3.1)1 is theanelasticapproximation ([28], [29]):∇ · (ρv) = 0. Citing [27], we observe
thatρ is ‘a steady reference-state density that varies only along the coordinate axis parallel to
the gravitational restoring force’i.e.ρ is equal toρ(0). In this case

∇ · (ρv) = ∇ · (ρ(0)v) = ∇x · (ρ(0)u(0))+ ∂z(ρ(0)w(0))+O(M) = O(M). (2.3.12)

The last equality follows from (2.3.8) and shows that the anelastic equation approximates the
full continuity equation up to terms of orderO(M) as M→ 0. Notice also that the Boussinesq
approximation,∇ · v = 0, will generally introduce unacceptable leading-order errors, unless
the vertical velocityw is very small everywhere.

Meso and synoptic scales: first order perturbation.Let ζ (0) be the synoptic density-weighted
vorticity of the average leading-order horizontal velocity

ζ (0) := ρ(0)k · ∇ξu(0)x = −ρ(0)∇ξ · u(0)⊥x . (2.3.13)

Remember thatξ := Mx. As pointed out in the previous paragraphs, pressure and density
are in hydrostatic balance as M→ 0. They only depend on the vertical coordinatez. Thus,
pressure tendencies∂p/∂t are small of orderO(M). These tendencies do not vary on the meso
scales: they are functions oft , ξ and of the vertical coordinate butnot of x. They are coupled
with ζ (0) through the following system

∂ttp
(1) − c(0)21ξp

(1) = −c(0)2f xζ (0) + P,

∂tζ
(0) = f

x

c(0)
2 ∂tp

(1) +Q.
(2.3.14)

This system describes the interaction between long-wave acoustics and large-scale vorticity.
The termsP andQ on the right-hand side depend on thex-average of the first-order per-
turbation vertical velocityw(1)

x
, on variations of the Coriolis parametersS and C on the

large scales, on correlations between fluctuations of the leading-order velocity, on large-scale
turbulent stresses and on the heating. In the special caseP = Q = 0 the system (2.3.14)
supports traveling waves of the form

(p(1), ζ (0)) = (p(1)0 , ζ
(0)
0 )ei(kx+ly−ωt) (2.3.15)

provided thatκ2 := k2+ l2 satisfies the dispersion relation

ω2 = c(0)2κ2+ f x2
. (2.3.16)

This is the dispersion relation for perturbations of theshallow waterapproximation linearized
about ageostrophicbasic state, see [27] page 15.
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The closure of system (2.3.14) for the first-order perturbation pressurep(1) and for the
large-scale vorticityζ (0) requires an equation for the vertical velocityw(1)

x
. For a stable

stratification,∂zs(0) 6= 0, one obtains:

∂ttp
(1) − c(0)21ξp

(1) = −c(0)2f xζ (0) + ρ(0)∂t
(
gw(1)

x − c(0)2∂zw(1)x
)

+ 1

Ro
c(0)

2
ρ(0)∇ξ ·

(
ũ(0)⊥

x

S̃x
x

+ iw̃(0)xC̃
x
)

+c(0)2∂z(ρ(0)ũ(0)xw̃(0)x
x

)

+(γ − 1)∂tD
(1)
ρe

x − c(0)2∇ξ ·D(0)
ρu

x

,

∂tζ
(0) = f

x

c(0)
2 ∂tp

(1) + f x∂z(ρ(0)w(1)x)

− 1

Ro
ρ(0)k · ∇ξ ×

(
ũ(0)⊥

x

S̃x
x

+ iw̃(0)xC̃x
x
)

−k · ∇ξ × ∂z
(
ρ(0)ũ(0)

x
w̃(0)

xx
)

− f
x

c(0)
2 (γ − 1)D(1)

ρe

x + k · ∇ξ ×D(0)
ρu

x

,

N(0)2c(0)
2
w(1)

x = − 1

ρ(0)
∂t

(
gp(1) + c(0)2∂zp(1)

)
+ g

ρ(0)
(γ − 1)D(1)

ρe

x

.

(2.3.17)

whereN(0) is the buoyancy frequency

N(0)2 := −g
(
∂zρ

(0)

ρ(0)
+ g ρ

(0)

γp(0)

)
. (2.3.18)

System (2.3.17) supports internal gravity waves, acoustic waves and the Lamb wave and
represents the link between our asymptotic framework and the classical theory of small per-
turbations of the state of rest for compressible stratified fluids (see [17, p. 171]). There are
two major differences between the classical theory and the present case. The first one is
in the equation for the vertical velocityw(1)

x
. In the classical theory such an equation is

obtained through combination of vertical momentum and continuity and contains a second-
order term∂ttw(1)

x
on the left-hand side. The second difference lies in the right-hand side of

(2.3.17) wherex-scale correlations of fluctuations of the leading-order solution, microscopical
transport and radiative heating appear as forcing terms in the equations. In the classical theory
these terms are absent due to linearization and the particular choice of the basic state (of rest).

The results outlined above have interesting implications for the issues of modeling and
computing slow atmospheric flows. So far, we can draw the following conclusions:
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1. Pressure perturbations of orderO(M2) affect the velocity field at leading order. Therefore,
single-variable representations of the pressure field do not allow a meaningful computa-
tion of pressure gradients.

2. For stable or moderately stable stratifications, the vertical velocityw must satisfy a diag-
nostic constraint. This constraint takes the form of a simple relationship between vertical
velocity, stratification and heating and isnota form of the continuity equation. This result
has three implications:

(a) Parameterizations of sub-scale physical processes involved in the energy budget (e.g.
turbulent heat transfer) are not completely free and must satisfy an integral constraint.

(b) The second-order perturbation pressure can be computed by solving, at eachz =
const. level, a two-dimensional elliptic problem. The numerical solution of this prob-
lem involves a plain Laplace operator and can be computed efficiently with standard
methods.

(c) There is no truly three-dimensional motion at meso and synoptic scales. Whether
numerical methods based on the unconstrained-constraint integration of the full three-
dimensional equation of motion can predict vertical winds which are consistent with
the asymptotic behavior of the true solution is an open question.

3. The analysis of deep convection on the micro scales reveals a vertical velocity-density
perturbation dynamics which is perfectly consistent with the above-mentioned diagnostic
constraint forw: in the quasi-steady limit Equation (2.3.11) simply reduces to Equation
(2.3.10).

4. On meso and synoptic scales pressure tendencies can be computed by integration of a sys-
tem of second-order partial differential equations which supports internal and barotropic
gravity waves, acoustic waves and Lamb wave. This system is a generalization of the set
of equations obtained in the classical theory of perturbations from the state of rest for
compressible stratified flows.

3. Mathematical issues

In this section we review a rigorous mathematical framework for deriving the relationships
commonly used in multi-scale asymptotics. For a detailed analysis we refer to [10]. For
concreteness, attention is focused on the low-Mach-number limit of the Euler equations. The
results,e.g.Lemma 3.1 and Lemma 3.2, however, are generally valid.

Motivated by observations of many systems of practical relevance, we require that each
quantity, sayU(x, t), is bounded in the sense that for allx ∈ G ⊂ Rd and for eacht ∈ R+0
there exists a time-dependent upper boundcU(t) such that

|U(x, t)| ≤ cU (t). (3.0.1)
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3.1. ASYMPTOTIC EXPANSIONS

The success of an asymptotic analysis depends crucially on the choice of an asymptotic se-
quence – the functions M0,M1,M2 . . . in, e.g., Equation (2.1.22) – as well as on the choice of
suitable time and space scales. These choices depend on both the governing equations and on
the regime being considered. Throughout this paper, the following asymptotic sequence has
been used in the analysis of low-Mach-number flows (ε = M):

φn(ε) = εn, n ∈ N0. (3.1.1)

The sequence satisfies

φn(ε) = o (φn−1(ε)) , ε → 0. (3.1.2)

The choice of this asymptotic sequence is not obvious! In the governing equation,e.g. in
(2.1.15)–(2.1.20), the perturbation parameter is the square of the Mach numberε2. In fact,
in the literature one can find many asymptotic analyses which are based on the sequence
φn(ε) = ε2n.

Using the decay property (3.1.2) one can prove the following Lemma:

Lemma 3.1Let{φn(ε)}n∈N0
be an asymptotic sequence andLn, n = 0, . . . , N arbitrary terms

which are independent ofε. Then

N∑
n=0

φn(ε)Ln = o (φN(ε)) , ε→ 0 (3.1.3)

holds if and only ifLn = 0, n = 0, . . . , N .

Proof: Let us assume the existence of termsL0, . . . , LN with max
n=0,... ,N

|Ln| > 0 for which

Equation (3.1.3) holds and letm = min
n=0,... ,N,Ln 6=0

n. Using (3.1.2), which is supposed to hold,

we obtain, form ≤ N :

m∑
n=0

φn(ε)Ln = o (φN(ε))−
N∑

n=m+1

φn(ε)Ln = o (φm(ε)) .

The last equality is a consequence of (3.1.3). Dividing byφm(ε) and taking the limitε → 0
one gets

lim
ε→0

∑m
n=0 φn(ε)Ln

φm(ε)
≡ Lm = lim

ε→0

o (φm(ε))

φm(ε)

in contradiction to the definition ofm. The opposite direction is trivial.
For further detailed discussions of asymptotic sequences, asymptotic series, order symbols,

etc., one may consult the classical textbooks by van Dyke [30], Schneider [1], or Kevorkian
and Cole [31, 32].

Simple examples show that, in general, an asymptotic single-scale expansion can not be
successfully employed in the context of problems that contain phenomena on different scales
[32, 33]. The following sections provide results for single as well as multiple-scales expan-
sions in space. The exact definitions of the asymptotic expansions are given in each section
separately.
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3.1.1. Single-scale asymptotic analysis for confined domains

In this section the Euler equations are considered in a domainG× R+0 with a bounded spatial
partG ⊂ Rd . Due to the boundedness ofG there is always a bound Ml > 0 such that for each
M ∈ (0,Ml ) no phenomena on a scaleξ = Mx are present in the distribution of the solution
vectoru = (ρ,m1, . . . , md, ρe)

T , provided we assume thaturef is fixed as M→ 0. Hence,
we define the asymptotic solution spaceUs as the set of all functionsu : G×R+0 × (0, M̃)→
Rd+2, M̃ > 0 which satisfy the governing equations and for which each physical quantityU

can be expressed by an asymptotic expansion

U(x, t;M) =
2∑
i=0

MiU (i)(x, t)+ o(M2), M → 0,

which is valid inG×R+0 . To study the properties of the functionsU(i), i = 0,1,2 we introduce
the asymptotic expansion into the Euler equations and collect the terms which are multiplied
by the same power of the Mach number M. These terms are functions which do not depend on
M and, according to Lemma 3.1, must vanish in the limit M→ 0. This leads to the following
asymptotic system

∂tρ
(i) +∇x ·m(i) = 0, i = 0,1,2, (3.1.4)

∇xp(0) = 0, (3.1.5)

∇xp(1) = 0, (3.1.6)

∂tm
(0) +∇x ·

(
m(0) ◦ v(0))+∇xp(2) = 0, (3.1.7)

∂t (ρe)
(i) + ∇x · ((ρe + p)v)(i) = 0, i = 0,1,2 (3.1.8)

in G×R+0 . Here we have introducedm := ρv. The above hierarchy of equations is the starting
point of the analysis presented in Section 2.1.2.

3.1.2. Multiple-scale asymptotic analysis for unbounded domains

In contrast to the previous section we consider a spatial domainG ⊂ Rd which satisfies(
dmin(G)

)−1 = O
(

M

`ref

)
, M → 0 (3.1.9)

with

dmin(G) := min
k=1,... ,d

|xk|.

This means that, for each M, the domainG is large enough to accommodate perturbations of
wavelength`ref/M, i.e., in dimensionless coordinates, perturbations on the large scaleξ =
Mx. Note that this assumption implies that eitherG = Rd or thatG depends on M or that
the physical dimensions ofG are fixed, but the reference length`ref is proportional to M.
Furthermore, without loss of generality we can require that there always exists a positive real
number M′ such that
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Bx

(
1

M

)
:=
{
x ∈ Rd

∣∣∣∣|x| < 1

M

}
⊂ G

for all M ≤ M ′. To take into account multiple space scales consider the mapping

g : Rd × R+0 × (0, M̃) → R2d × R+0 ,

(x, t;M) g7−→ (x,Mx, t) .
(3.1.10)

This mapping allows us to define a particular spaceŨm of functions which are solution of the
Euler equations. These are those functionsU that can be expressed inG× R+0 by a multiple-
scale asymptotic expansion

U (x, t;M) =
j∑
i=0

Mi U (i) (g(x, t;M))+ o (Mj
)
, M → 0, j = 0,1,2,

which is uniformly valid outside an arbitrary large ballBx (s), s ∈ R+. The asymptotic
functionsU(i) depend on two space coordinates,η andξ :

U(i) : Rd × Rd × R+0 → R, i = 0,1,2

(η, ξ , t)
U(i)7−→ U(i) (η, ξ , t) ,

Note that one cannot derive the uniform validity of the asymptotic expansion forj = 0,1
from the fact that the asymptotic expansion is uniformly valid forj = 2. Therefore, it is
necessary to introduce this assumption in the multiple-scale case. First, let us consider the so-
called sub-linear growth condition for asymptotic functions. This condition represents a basic
tool throughout the analysis.

Lemma 3.2
LetU : Rd × R+0 × (0, M̃)→ R be uniformly bounded with respect tox andM, let s ∈ R+,
and let the asymptotic multiple-scale expansion

U (x, t;M) =
j∑
i=0

Mi U (i) (g(x, t;M))+ o (Mj
)
, M → 0

be valid inRd × R+0 and uniformly valid inRd \ Bx(s) × R+0 for eachj = 0,1,2. Then the
leading-order asymptotic functionU(0) satisfies

U(0) (g(x, t;M)) = o (|x|α) , x ∈ ∂Bx

(
1

M

)
, M → 0 (3.1.11)

for all α > 0. Furthermore, the first-order and second-order asymptotic functions satisfy

U(i) (g(x, t;M)) = o (|x|) , x ∈ ∂Bx

(
1

M

)
, M → 0, i = 1,2, (3.1.12)

respectively.

Proof: From the uniform validity of the asymptotic expansion we have

U(i) (g(x, t;M)) = o (M−1
)
, M → 0 (3.1.13)
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uniformly in Rd \ Bx(s) × R+0 for i = 1,2. Given a null sequence{Mn}n∈N, we define an

arbitrary vector sequence{xn}n∈N with xn ∈ ∂Bx
(

1
Mn

)
. Now, we define the null sequence

{M̃n}n∈N as a subsequence of{Mn}n∈N by taking only those elements which satisfỹMn < s−1.
Furthermore, we define the vector sequence{̃xn}n∈N as a subsequence of{xn}n∈N which is
given by the elements satisfying̃xn ∈ ∂Bx

(
1

M̃n

)
. Using the uniform validity of (3.1.13), we

obtain

0= lim
n→∞

U(i)(g(̃xn, t; M̃n))

M̃−1
n

= lim
n→∞

U(i)(g(̃xn, t; M̃n))

|̃xn| = lim
n→∞

U(i)(g(xn, t;Mn))

|xn| ,

which proves (3.1.12). In order to derive Equation (3.1.11), we use the uniform boundedness
of U . This yields

U(x, t;M) = o(rα), x ∈ ∂Bx(r), r →∞ (3.1.14)

for all α > 0. Using the asymptotic expansion, we obtain

U(x, t;M) = U(0) (g(x, t;M))+ o(1), M → 0 (3.1.15)

uniformly in Rd \ Bx(s) × R+0 . A simple combination of the Equations (3.1.14) and (3.1.15)
leads to

U(0) (g(x, t;M)) = U(x, t;M) + o(1)
= o (M−α)+ o(1) = o (|x|α) ,

wherex ∈ ∂Bx
(

1
M

)
and M→ 0.

Notice that the validity of Theorem 3.2 does not depend on the special form of the mapping
g and therefore the sub-linear growth condition is also valid in the case of a single-scale
expansion if an unbounded domain is considered. The assumption that the physical quantityU

is uniformly bounded is motivated by (3.0.1) and guarantees that we have chosen the reference
values in a proper manner. Using the derivatives

∂t(U
(i) ◦ g)(x, t;M) = ∂tU(i)(g(x, t;M)) , (3.1.16)

∂xj (U
(i) ◦ g)(x, t;M) = ∂ηjU(i)(g(x, t;M))+M∂ξ j U

(i)(g(x, t;M)), j = 1, . . . , d (3.1.17)

and introducing the asymptotic expansion into the Euler equations, one obtains

∂tρ
(0) +∇η ·m(0)

+M
(
∂tρ

(1) +∇η ·m(1) +∇ξ ·m(0)
)+M2

(
∂tρ

(2) +∇η ·m(2) +∇ξ ·m(1)
)

= o (M2
)
, M → 0 in D̃(M),

(3.1.18)

M−2∇ηp(0) +M−1
(
∇ηp(1) +∇ξp(0)

)
+
(
∂tm

(0) +∇η ·
(
m(0) ◦ v(0))+∇ηp(2) +∇ξp(1))

= o (1) , M → 0 in D̃(M),

(3.1.19)
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∂t(ρe)
(0) +∇η · ((ρe + p)v)(0)

+M
(
∂t(ρe)

(1) +∇η · ((ρe + p)v)(1) +∇ξ · ((ρe + p)v)(0)
)

+M2
(
∂t(ρe)

(2) +∇η · ((ρe + p)v)(2) + ∇ξ · ((ρe + p)v)(1)
)

= o (M2
)
, M → 0 in D̃(M),

(3.1.20)

where the manifold̃D(M) is defined to be

D̃(M) := {(η, ξ , t) ∈ R2d × R+0
∣∣(η, ξ , t) = g(x, t;M), (x, t) ∈ G× R+0

}
.

In contrast to the single-scale expansion, the manifoldD̃ depends on the reference parameter
M and therefore we are not able to decompose the above system (3.1.18)–(3.1.20) in the same
manner as described in Section 3.1.1. In order to overcome this difficulty, it is convenient to
introduce the spaceUm ⊂ Ũm of those asymptotic functionsU(0), U(1), U(2) which satisfy
the Equations (3.1.18)–(3.1.20) in

D := {(η, ξ , t) ∈ R2d × R+0
∣∣ξ j < M̃ηj , j = 1, . . . , d

}
and fulfill the sub-linear growth condition in the sense that, for fixedξ , one has

U(0) (η, ξ , t) = o (|η|α) , η ∈ ∂Bη

(
1

M

)
, M → 0

for all α > 0 and

U(i) (η, ξ , t) = o (|η|) , η ∈ ∂Bη

(
1

M

)
, M → 0, i = 1,2.

Then, in analogy with the single-scale case, we can express Equations (3.1.18) – (3.1.20) in
the equivalent form

∂tρ
(0) +∇η ·m(0) = 0, (3.1.21)

∂tρ
(1) +∇η ·m(1) = −∇ξ ·m(0), (3.1.22)

∂tρ
(2) +∇η ·m(2) = −∇ξ ·m(1), (3.1.23)

∇ηp(0) = 0, (3.1.24)

∇ηp(1) = −∇ξp(0), (3.1.25)

∂tm
(0) +∇η ·

(
m(0) ◦ v(0))+ ∇ηp(2) = −∇ξp(1), (3.1.26)

∂t (ρe)
(0) +∇η · ((ρe + p)v)(0) = 0, (3.1.27)

∂t (ρe)
(1) +∇η · ((ρe + p)v)(1) = −∇ξ · ((ρe + p)v)(0) , (3.1.28)

∂t (ρe)
(2) +∇η · ((ρe + p)v)(2) = −∇ξ · ((ρe + p)v)(1) (3.1.29)
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in D . This hierarchy of equations is the starting point of the analysis presented in Sec-
tion 2.1.3.

3.1.3. Examples

The sub-linear growth conditions stated in Lemma 3.2 provide the key to derive many of
the results presented in previous sections. We discuss two examples. First, consider Equa-
tion (2.1.36) and letp(0) ∈ Um. Then Equation (3.1.24) impliesp(0) = p(0)(ξ , t). Equa-
tion (3.1.9) together with the mappingg allows the integration of (3.1.25) over the open ball
Bη
(

1
M

)
. Using sub-linear growth condition, we have

∇ξp(0) = − 1

|Bη
(

1
M

) |
∫

Bη
(

1
M

) ∇ηp(1) dη = − 1

|Bη
(

1
M

) |
∫
∂Bη

(
1
M

) p(1) · n ds

= O(Md) O(M1−d) o(M−1) = o(1), (M → 0).

Hence, we obtainp(0) = p(0)(t) and the first-order momentum equation (3.1.25) givesp(1) =
p(1)(ξ , t) as stated in (2.1.36). In the second example we emphasize the meaning of small-
scale averaging in the derivation of Equation (2.1.41). Consider the small-scale average oper-
ator

U(ξ , t) := lim
M→0

1∣∣Bη ( 1
M

)∣∣
∫

Bη
(

1
M

) U(η, ξ , t) dη.

Again, using the sub-linear growth condition, one has

1∣∣Bη ( 1
M

)∣∣
∫

Bη
(

1
M

) ∇ηp
(2) +∇η ·

(
m(0) ◦ v(0)) dη = o(1), (M → 0).

As seen above,p(1) = p(1). Thus, averaging the momentum equation (3.1.26) leads to

0 = lim
M→0

1∣∣Bη ( 1
M

)∣∣
∫

Bη
(

1
M

)
(
∂tm

(0) +∇η ·
(
m(0) ◦ v(0))+∇ηp(2) +∇ξp(1)) dη

= lim
M→0

1∣∣Bη ( 1
M

)∣∣
∫

Bη
(

1
M

) ∂tm
(0) dη + ∇ξp(1)

= ∂tm(0) +∇ξp(1),
which is the first equation of system (2.1.41).
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4. Numerics

4.1. DISCRETE IDENTIFICATION OF A MULTIPLE-SCALE LOW-MACH-NUMBER FLOW

REGIME

In the following sections, unless otherwise stated, all quantities are assumed to be in dimen-
sional form. The superscriptˆ denotes the dimensional form. For the sake of simplicity we
neglect the superscript whenever its omission does not lead to misunderstandings.

The identification of a low-Mach-number long-wave regime is closely related to the deter-
mination of a discrete equivalenťM of the Mach numberM̌ ∈ (0,1] and to the decomposition
of the primitive variableŝU = (ρ̂, v̂, p̂)T needed in the multiple scaleansatz. In particular,
the density ˆrho and the velocitŷv can be decomposed in the form

ρ̂ = ρ + ρ ′, v̂ = v + v′,
where the superscript′ denotes short wave phenomena and the overbar characterizes long-
wave parts, respectively. On the other hand, it is appropriate to decompose the pressure into
three terms

p̂ = p̂(0) + M̌p̂(1) + M̌2p̂(2). (4.1.1)

Consider, first, the pressure decomposition. Notice that no truncation error of ordero(M̌2)

appears in Equation (4.1.1). Here, in contrast to theansatzintroduced in the asymptotic analy-
sis, the pressure splitting is exact andp̂(0), p̂(1), andp̂(2) are not solutions of the asymptotic
equations discussed in Section 2.1. The idea, however, is to try to construct functionsp̂(0), p̂(1),
and p̂(2) that have the same asymptotic behavior as the corresponding pressure components
of the asymptotic sequence. First, consider the leading-order pressurep̂(0). If the reference
parameterM̌ is sufficiently small, we requirêp(0) to be spatially homogeneous and the first-
order pressurêp(1) has to represent exclusively long-wave phenomena. Due to the exactness
of the pressure decomposition (4.1.1) the second-order pressurep̂(2) can then be computed
from p̂, p̂(0) and p̂(1) and represents the remaining long- and short-wave influences. If the
data are in the low-Mach- number regime, we expect this construction to provide a discrete
pressure decomposition that guarantees the boundedness constraints

p̂(i) ≤ Cp̂ref, i = {1,2,3} . (4.1.2)

If not, we will assume the flow field not to fall into the single-time, multiple-space-scale
regime considered here (notice, however, that thisansatzexcludes multiple-time, single-space
scale regimes as considered,e.g., in [5], [3], [34], [35], [4] and references therein). Notice also
that the constantC must be independent of̌M.

We propose discrete-filter operations that, given a pressure distribution, determineM̌ and
the relevant underlying length scales and simultaneously provide a pressure decomposition
that, in the low-Mach-number long-wave regime, satisfies the above boundedness constraint.
It turns out that pressure decomposition (4.1.1), determination of an effective numerical value
M̌ corresponding to the physical Mach number M and extraction of short and long wave-
lengths have to be synchronized in a suitable way to achieve a decomposition satisfying the
boundedness constraint (4.1.2).

Notice that ifM̌ is much smaller than the ratio between the smallest flow scalel̂ref and the
maximal diameter of the domain̂�, i.e.,
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1

M̌
� dmax(�̂)

l̂ref

= dmax(�),

long-wave acoustic phenomena on a scaleξ = M̌ x cannot be accommodated and the multiple-
scale expansion degenerates into a single-scale expansion. In this case computing the first-
order pressure and the long-wave parts of density and velocity is inappropriate. The limit of
M̌ = M = 0 will be discussed in more detail in Section 4.3. If we define

p̂(0)(t) := p̂ref (t) = 1

|�̂|
∫
�̂

p̂(x, t)dx,

then the requirements mentioned above regarding the leading-order pressurep̂(0) hold for all
M̌ ∈ (0,1]. Furthermore, it is possible to rewrite the pressure decomposition (4.1.1) as

φ = φ + φ′,
with φ := p̂ − p̂(0), φ := M̌p̂(1) and φ′ := M̌2p̂(2). We can describe a decomposition
algorithm in the following way:

Let I denote the index set of the discretization. Decompose every given signal(fi)i∈I of a
functionf in the form

fi = f i + f ′i , ∀i ∈ I,
where(f i)i∈I represents only long-wave phenomena and(f ′i )i∈I contains the remaining
long- and short-wave parts. Furthermore(f ′i )i∈I has to be small compared to(f i)i∈I with
regard to the maximum norm, i.e.

‖(f i)i∈I‖∞ � ‖(f ′i )i∈I‖∞.
An optimal decomposition algorithm should satisfy the following requirements:

A. The decomposition as well ašM have to be calculated simultaneously to satisfy (4.1.1)
and (4.1.2) in an optimal way.

B. The reference parameteřM should continuously depend on the data of the discretization.

C. The algorithm should be almost parameter-free and must terminate automatically.

D. The method should locally be self-adaptive with respect to the data of the discretization,
i.e. the decomposition should be invariant in regions where the signal is sufficiently
smooth.

E. Relevant features of the solution should be neither dislocated nor smoothed.

F. The algorithm must be independent of the type of discretization. It must also be robust
to grid refinements and to numerical noise. In this context it seems to be worthwhile to
prove the continuity of the decomposition operators used.
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G. The method must be fast, since the physical quantities have to be decomposed at each
time step. Thus, ifn denotes the number of discretization points or control volumes, the
algorithm has to be of orderO(n logn) or even faster.

Due to the last requirement, averaging operators based on convolutions with a box function or
a Gaussian kernel must be discarded. We also disregard filtering algorithms based on Fourier
transformations. These would require certain manipulations of high frequencies associated
with aliasing errors and non-periodicity of the analyzed signals. The net effects on the result-
ing signal components are ambiguous and hard to control, especially on unstructured grids.
Besides, Fourier decomposition is a global operation.

Wavelets have local properties in space and time, but until now they are restricted to struc-
tured grids. This makes them too rigid in the context of remark (F). Furthermore, the reference
parameterM̌ must be precisely determined for small values, but this is impossible by means of
a single wavelet analysis. Sampling the high-frequency parts of the wavelet analysis again, it is
possible for us to determine all frequencies at the cost of loosing the multiple-scale properties
and the order of the algorithm.

A survey of scale-space evolution algorithms which are based on parabolic differential
equations is given in [36]. Besides the advantages of a curve evolution based on linear diffu-
sion equations there are serious problems arising in this approach (Weickert [36, p. 6]):

a. ”Gaussian smoothing does not only reduce noise, but also blurs important features such
as edges and, thus, makes them harder to identify. Since Gaussian scale-space is designed
to be completely uncommitted, it cannot take into account anya-priori information on
structures which are worth being preserved (or even enhanced).

b. Linear diffusion filtering dislocates edges when moving from finer to coarser scales. So
structures which are identified at a coarse scale do not give the right location and have
to be traced back to the original image[..]. In practice, relating dislocated information
obtained at different scales is difficult and bifurcations may give rise to instabilities.
These coarse-to-fine tracking difficulties are generally denoted as the correspondence
problem.”

To overcome these problems anisotropic and nonlinear diffusion processes or even reactive-
diffusion filters are being considered, but these decomposition strategies are not parameter-
free and controlling the termination of the resulting algorithms is still an open problem.
Furthermore, the computational effort associated with this class of complex filter algorithms
increases in comparison with the simpler linear diffusion approaches, which already have an
operation count similar to convolution processes. Hence, such techniques are also unsuitable
for the kind of problem considered.

4.1.1. Long-wave short-wave filters based on polygonal curves

In the area of discrete geometrical data analysis, [37], polygonal curves are simplified to
extract the important visual parts neither changing the coarse structure of the borderline
nor dislocating the relevant features. This is done via a step–by–step algorithm. During each
curve-analysis step a certain number of successive edges are replaced by a straight line con-
necting the endpoints of such a set of edges. The key to success of this very simple algorithm
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is hidden in the order of these replacements. In each step of the evolution a relevance measure
assigns a cost value to each pair of edges. If the cost value is small, that is, the structure em-
braced by the pair of edges is insignificant, it will be replaced. The sequence of replacements
enforced by the relevance measure produces a hierarchy of structures.

In our case a suitable relevance measure has to be defined to classify those points of a
discrete distribution(fi)i∈I which are not represented by the functionf which has to be
calculated. Then, the values of these points have to be replaced to givef some kind of discrete
smoothness.

First of all, we must derive an appropriate definition to distinguish long-wave and short-
wave phenomena. In contrast to the Fourieransatzwe will call any function to be of long-
wave type, if the distance between its turning points is sufficiently large. On the basis of this
definition, a sine function belongs to the same class as an arbitrary function having equivalent
minimal distances between its turning points.

This definition of ‘long-waviness’ suffers from the drawback that high-frequency parts in
the sense of Fourier can conceal themselves in long-wave structures. An example is given by
a wave steepening into a shock. Although the frequency increases rapidly with respect to the
Fourier series, the distance between two turning points can still remain constant during the
steepening process. Consequently, the wavelength of the function as defined by our ‘turning
point’ measure is constant. Thus, it might be necessary to execute a Fourier analysis of the
signalafter it has been decomposed.

Generally, in areas with short-wave structures turning points are very frequent, whereas in
areas with long wave structures only a few turning points can be found. We will exploit this
property of the wavelength to define a cost function and finally derive the relevance measure.

4.1.2. A discrete-wavelength decomposition algorithm

For the sake of simplicity we confine ourselves to a single-space dimension. Let(σi)i∈ I be
a given disjunct decomposition of the domain� into control volumes, boxes for short. Let
I be an index set andn its size:n := #(I ). We associate the values(fi)i∈I to the centers
of the boxes. Connecting each value with its neighbors with a segment leads to a piecewise
linear function comparable to the polygonal contours investigated in [38]. We denote an edge
connecting the valuesfi andfi+1 by ki+ 1

2
and the turn angle (the angle enclosed by the edges

ki− 1
2

andki+ 1
2
) by αi .

Using the sign ofαi, we can now subdivide the domain� into overlapping concave and
convex subdomains�j, j ∈ J , whereJ denotes the index set of subdomains. Each sub-
domain consists of points with the same sign of the turning angle plus the left and right turning
points. Therefore, each point on the boundary of a sub-domain is called a discrete turning point
of the functionf . Note that discrete turning points always appear in pairs. Between a pair of
turning points there might be points with vanishing turning angles.

The discrete-curve decomposition of a functionf produces a sequence of functions{f 0 =
f, . . . , f m} and a sequence of index sets{I 0 = I, . . . , Im} with #I l+1 < #I l and #Im ≤ 2. In
this description the index setI l denotes those points which are still unchanged at the beginning
of the l-th decomposition step. To determine those points which are to be removed during the
l-th step, every pointf li , i ∈ I l, is allocated a cost valuek(i, I l) ∈ R+ via the relevance
measure to be determined in the next section. Let

kmin(I
l) := min{k(i, I l) : i ∈ I l}.
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The setImin(I
l) denotes the set of points with minimal costs at thel-th step,

Imin(I
l) := {i ∈ I l : k(i, I l) = kmin(I

l)}.
Now the algorithm removes the index setImin(I

l) from I l,

I l+1 = I l \ Imin(I
l).

4.1.3. The relevance measure and the singular reference parameter

The relevance measure represents the significance of each individual structure compared to all
others and therefore controls the sequence of the decomposition steps.

In our case the relevance measure should be characterized by the wavelength of the func-
tion. The wavelength itself was fixed by the distance of the turning points from each other. So
the cost function of a cell averagefi should primarily be a function of the sum of the distances
from its neighboring turning points with different signs of the turning angles compared to the
angle at indexi. The cost function should only secondarily depend on other properties like
its relative position between its turning points or its curvature. The sum of the distances to
the so-called neighboring turning points are equal to the length of the concave or convex
subdomains|�j | projected onto the x-axis. Note thatσi can be a member of up to three
different subdomains. Because the number of subdomains changes during the evolution, we
also introduce a sequence of index sets{J 0 = J, . . . , Jm} of subdomains�j .

Now, define the cost functionk(i, I l) ∈ R+ to be

k(i, I l) := ∣∣ min
j∈{J l , σi∈�j }

|�j | −min
j∈J l
|�j |

∣∣ ∗ |αi|, ∀i ∈ I l. (4.1.3)

Obviously, the cost function represents a non-negative function which is equal to zero for all
points of the smallest sub-domain. Hence, in addition to the points with collinearly arranged
function values, all points of the smallest sub-domain are removed during the next step.

If we define the minimal wavelength of the functionfl as the minimal distance of two
neighboring subdomains�j, �j+1, viz.,

λmin(f
l) := min

j∈J l
(|�j | + |�j+1| − |�j ∩�j+1|

)
with �j := ∅, ∀j /∈ J l, then the inequality

λmin(f
l) ≤ λmin(f

l+1)

does not hold for alll ∈ {0, . . . , (m−1)}, in general. Nevertheless, for the stopping criterion,
it follows

λmin(f
0) ≤ λmin(f

m) = |�|.
In the caseλmin(f

0) 6= |�| the inequality is sharp. Thus, the minimal wavelength increases
during the evolution, although it is theoretically possible that the progress is not monotone.

Now we can easily define the reference parameterM̌ as

M̌(f l) := min

{
1

λmin(f
l)
,1

}
. (4.1.4)
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4.1.4. Properties of the scale-decomposition scheme

A summary of all steps of the algorithm described in the previous chapters is now given:

1. SetM̌ = 1, l = 0, f i = fi, f ′i = 0, ∀i ∈ I 0 = I ;

2. Subdivide� into overlapping concave and convex subdomains�j of the functionf i, ∀i ∈
I 0;

3. ComputeM̌ by means of Equation (4.1.4) and check the validity of the estimates in (4.1.2)
as well as #I l > 2. If one of these conditions is not satisfied, the evolution is stopped;

4. Assign a relevance measurek(i, I l) to each boxσi, i ∈ I l, using the cost function (4.1.3);

5. ComputeImin(I
l) = {i ∈ I l : k(i, I l) = 0};

6. Reduce the index set of the maintained function values,
I l+1 = I l \ Imin(I l);

7. Computef i, i ∈ I 0 \ I l+1 taking the maintained pointsfi, i ∈ I l+1 into account;

8. Computef ′i = fi − f i, i ∈ I 0 \ I l+1;

9. Increase the index of the evolution,l = l + 1;

10. Go to (2.).

We add some remarks regarding the smoothness of the discrete functionf . The use of a simple
linear interpolation in order to define discrete values for the smooth functionf at those points
which are actually removed does not lead to a suitable recovery procedure, since it is possible
that all points in larger parts of the domain have been removed. The tempting alternative of
cubic splines has the considerable disadvantage that it may or may not generate new turning
points. This would necessitate a recursive decomposition procedure with an undetermined,
possibly infinite number of steps until termination.

We have decided to employ the followingansatz. First of all, we add some of the removed
points in such a way that no additional turning points are introduced. Only then we apply one
of the recovery techniques mentioned above. The resulting scheme yields good results already
in the case that the recovery step is given in the form of a linear interpolation documented in
Section (4.1.5) below.

In [38] those properties which are independent of the relevance measure chosen are jointly
employed in the numerical framework. Now, we want to investigate in addtion the properties
that are dependent on the underlying relevance measure (4.1.3) in order to introduce them in
a proper manner.

a. The decomposition of the pressure is enforced simultaneously with the computation of
the reference parameter. During each step of the decomposition procedure the wavelength
of the smoothed function increases, while the reference parameter will decrease.
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b. The accuracy of the value of̌M depends only on the quality of the discretization.

c. The algorithm is parameter-free and terminates automatically. At the end of the evolution
process a straight line is obtained, if #I ab ≤ 2.

d. The method is self-adaptive to the data. Due to the chosen relevance measure, only
subdomains of� including short-wave phenomena will be processed during one de-
composition step. All other points remain unchanged.

e. The scheme does not introduce any shape-rounding effects and there is no dislocation of
relevant features, because the remaining points do not change their values.

f. The cost function is not continuous and passes this property to the algorithm employed
to decompose the physical quantities. Nevertheless, owing to the fact that parts of the
domain� are treated as a whole in the evolution, numerical experiments emphasize
that the splitting does not depend on the discretization. Furthermore, noise is a short-
wave phenomenon and therefore noise elimination takes place in the early stages of the
evolution process.

g. The algorithm requiresO(n logn) operations.

4.1.5. Numerical results

We have chosen two one-dimensional test cases to demonstrate the numerical accuracy of
the decomposition algorithm. In both cases we use a regular discretization of the domain
� = [−51,51] into control volumesσi with |σi| = 1

10, ∀i ∈ I , I = {0, . . . ,1019}.
First, we considered a long sinusoidal pressure wave(M̌ = 1

102) which is disturbed by a
regular short-wave noise function,

p̂ = p̂(0) + M̌p̂(1) + M̌2p̂(2)

with the reference of the pressurep̂ref set top̂ref = 4
M̌2 and

p(0) = 1, p(1) = 2γ (1+ cos(2πM̌x), p(2) = 2γ sin(80πM̌x).

Figures 1 and 2 show the analytical long- and short-wave components of the pressure wave
p̂. The total pressure distribution defined the by adding of long- and short-wave components
is shown in Figure 3. In Figures 4 and 5 the decomposed long- and short-wave components are
plotted. The long-wave part of the pressure is reproduced very well and it is separated from
the short-wave perturbation. There are only two pairs of turning points left, so the reference
parameterM̌ has taken the value of the frequency of the analytical pressure wave in a natural
way.

The other example is concerned with a density distribution moving in a long-wave acoustic
field. The initial conditions are
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Figure 1.Long wave pressure part. Figure 2.Pressure perturbation.
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Figure 3.Total pressure distribution̂p. Figure 4.Filtered long wave part.
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Figure 5.Remaining noise. Figure 6.Density profile.
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Figure 7.Filtered long wave signal. Figure 8.Short wave oscillations.

ρ̂(x, t = 0) = 1+ 1

51

(
1+ cos

(
2πx

102

))
+8(x)1

2
sin

(
80πx

102

)
,

v̂(x, t = 0) = √γ
(

1+ cos

(
2πx

102

))
,

p̂(x, t = 0) = 512

(
1+ γ

51

(
1+ cos

(
2πx

102

)))
,

and

8(x) =
{

1
2

(
1− cos(10πx

102 )
)
, if 0 ≤ x ≤ 102

5 ,

0 otherwise.

The signal of the density is filtered at timeT = 5,071.
This example clearly shows the advantages of the proposed decomposition algorithm. The

decomposition is almost completely restricted to the sub-domain where the short-wave oscil-
lations of the density distribution are found. In the other parts of� the filtered function and
the original one are almost the same, neglecting numerical noise of size 10−6. Therefore, no
shape-rounding effects have taken place.

4.2. EXTENSION OF INCOMPRESSIBLE METHODS TO WEAKLY COMPRESSIBLE FLOWS

In the following we will show how to use the asymptotic analysis described in Section 2 to
extend an incompressible method to the weakly compressible regime. Incompressible solvers
are usually based on the primitives variables. We adopt this formulation here and use a stag-
gered grid to stabilize the pressure-velocity coupling. We restrict ourselves to describing the
extension of a projection method. The modification for the SIMPLE-type scheme is given in
[39].
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4.2.1. A compressible projection method

Projection methods for incompressible flows have been introduced by Chorin [40, 41]. In
such methods discrete approximate solutions to the incompressible Navier-Stokes equations
are advanced in time through two steps. First, the new-time-level density and an intermediate
velocity field are obtained by a discrete integration of the convection-diffusion system

ρt + v · ∇ρ = 0,

vt + (v ◦ ∇) v = − 1

ρRe
∇ · τ, (4.2.1)

overtn < t ≤ tn+1 with the old-time-level distributionsvn, ρn as initial data

v(tn) = vn ρ(tn) = ρn . (4.2.2)

(Note that the original method was designed for constant density flow, for which (4.2.1a) is
void. The density-advection equation is ignored.)

The auxiliary velocity fieldv∗,n+ 1
2 obtained from this step is not divergence-free due to

the absence of the pressure gradient in the momentum equation. A correction is constructed
through discrete integration overtn < t ≤ tn+1 of the projection equation

vt + 1

ρ
∇p(2) = 0, (4.2.3)

with the intermediate fieldv∗,n+ 1
2 as initial data, and with the divergence constraint for the

new-time-level velocity field,

∇ · vn+1 = 0 . (4.2.4)

In the weakly compressible regime, we split the full compressible Navier-Stokes equations
into two subsystems in a similar way. The convection-diffusion system now reads as

ρt + v · ∇ρ = 0,

vt + (v ◦ ∇) v = − 1

ρRe
∇ · τ,

pt + v · ∇p = 0,

(4.2.5)

and the ‘sonic’ system as

ρt + ρ∇ · v = 0,

vt + 1

M2ρ
∇p = 0,

pt + γp∇ · v = γ

Pr Re
∇ · q,

(4.2.6)

which contains all effects that spread with sound velocity and degenerate to an elliptic con-
straint as M→ 0. Heat conduction with heat fluxq is retained here, since it influences the
divergence constraint as seen in Equation (2.1.30) whereas diffusion does not. Neglecting
the viscous and heat-conduction terms, we may call this decomposition a hyperbolic-elliptic
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splitting that is motivated by the wave speed as mentioned above, but also by the asymptotic
analysis, (see [2, 39]). In the system (4.2.5) all the terms which are associated with elliptic
expressions in the zero-Mach-number limit are neglected.

The convection-diffusion system is discretized by means of an explicit MUSCL-type up-
wind scheme for the convective terms and implicit second-order central differences for the
diffusion part. Thus, the CFL-time step condition contains only the finite flow velocity.

The sonic system is discretized implicitly to avoid time-step restrictions due to the sound
velocity tending to infinity in the limit. Here, the pressure expansionp

(
x, t; M̂

)
= p(0) (t)+

M̂p(1) (ξ, t)+ M̂2p(2) (x̄, ξ, t) comes into play. Notice that the numerical parameterM̂ is now
identified with the Mach number M, as we consider a case where compressibility effects do
not change dramatically as the solution evolves in time. First, the total pressure has to be
decomposed into its leading, first- and second-order contributions. Using the fact the leading-
order pressurep(0) becomes constant on both space scales and the first-order termp(1) on the
small space scale, they may be defined by averaging procedures,

p(0) := 1

|V |
∫
V

p dV, (4.2.7)

and

p(1) := 1

M̂|Vac|
∫
Vac

(
p − p(0)) dV, (4.2.8)

whereVac is the acoustic domain. On a two-dimensional Cartesian grid of constant grid spac-
ingh and coordinatesx andy,Vac is the rectangle[x−h/(2M), x+h/(2M)]×[y−h/(2M), y+
h/(2M)]. The second-order pressurep(2) then becomes

p(2) := 1

M̂2

(
p − p(0) − M̂p(1)

)
. (4.2.9)

for consistency. For̂M → 0, the acoustic domain exceeds the computational domain andp(1)

becomes zero and drops out of the equations. AsM̂ becomes very small, but non-zero, the
influence of the pressure termp(2) on the thermodynamics of the system becomes negligible.
It is thus regarded as a new variable independent of the total thermodynamic pressure, which
is consistent with the earlier asymptotic results.

The temporal evolution ofp(0) andp(1) can be determined from (2.1.32) and (2.1.44). From
Equation (2.1.32), we obtainp(0)t by applying a suitable ODE-integrator. To determinep(1)t ,
the acoustic system (2.1.44) has to be solved. To do so, we have two possibilities. The first is
that the large-scale derivatives∇ξ are replaced by∇x/M̂ using the chain rule and the equations
are solved on the same grid as used to resolve the flow structures. This requires an implicit
scheme, since the time step for an explicit scheme would be restricted by a CFL-condition
including the speed of sound. Thus, the time step would tend to zero forM̂ → 0. On the
other hand, Equations (2.1.44) include only large scale effects. No resolution of short-scale
phenomena is necessary and a much coarser grid can be used. The coarsening factor is known
to be 1/M̂, which is the factor between the two space scalesx andξ . In a discretization based
on such an adapted coarse grid the Mach number cancels from the CFL-condition for the
acoustic equations and they can be solved explicitly with low computational effort. The only
potentially expensive computational step remains the extraction of the appropriate long-wave
solution components needed to initiate the coarse-grid time step. The naïve integral filters from
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(4.2.7), (4.2.8) must be replaced by more elaborate techniques as discussed in Section 4.1 to
overcome this obstacle.

System (4.2.6) is solved in the following way. Introducing the pressure decomposition and
rewriting it as a system for density, velocity and the incompressible pressurep(2), we obtain

ρt + ρ∇ · v = 0,

vt + 1

ρ
∇p(2) = − 1

M̂ρ
∇p(1),

M̂2p
(2)
t + γp∇ · v = γ

Pr Re
∇ · q − p(0)t − M̂p(1)t .

(4.2.10)

For q = 0, this system can be viewed as the second step of the incompressible projection
method since the right-hand sides of Equations (4.2.10b) and (4.2.10c) vanish forM̂ → 0 and
the equations coincide with system (4.2.6).

Equations (4.2.10) are solved by nested iterations. All equations are discretized implicitly.
Then, the density is fixed at the value obtained from the convection-diffusion step solving
Equations (4.2.5). The leading- and first-order pressure terms at the new time level are already
determined,p(0),n+1 = p(0),n + 1tp(0)t andp(1),n+1 = p(1),n + 1tp(1)t , wherep(0),n and
p(1),n are obtained from the discretized Equations (4.2.7), (4.2.8). The old-time-level pres-
surep(2),n was given by Equation (4.2.9), the one at the new time level has to be guessed.
Usually, it is either assumed to bep(2),∗ = p(2),n or p(2),∗ = 0. Then, the estimate for
the total pressure at the next time level is set according the consistency conditionp∗ =
p(0),n+1 + M̂p(1),n+1 + M̂2p(2),∗. With these, the new time level velocityv∗ can be guessed
from the discretized velocity equation (4.2.10b). The new-time-level pressure can then be set
to be the guess plus a correction,

p(2),n+1 = p(2),∗ + δp(2), pn+1 = p∗ + M̂2δp(2). (4.2.11)

Inserted into the discretized pressure equation (4.2.10c), a Poisson-equation is obtained for
the pressure-correction termδp(2) which reads as

M̂2

1t
δp(2) − γp∗∇ ·

(
1t
ρ
∇δp(2)

)
=

−γp∗∇ · v∗ + γ

Re Pr
∇ · q − p(0)t − M̂p(1)t

−M̂2

1t

(
p(2),∗ − p(2),n) .

(4.2.12)

The estimatep∗ for the total pressure is used as the linearisation term here. With the solution
δp(2) of this equation, the estimatesp(2),∗ andp∗ are improved according to (4.2.11), the
corresponding velocity estimate is calculated and the process is repeated up to convergence.
With the velocity obtained from this inner iteration, a new density estimate is obtained and the
inner loop is started again. Most of the computing time for the simulation is spent in solving
the linear system resulting from discretizing the pressure-correction equation (4.2.12). For this
we use preconditioned Krylov-Subspace schemes or multi-grid techniques.
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Figure 9 Vorticity at timest=0,1,2.

4.2.2. Numerical results

The algorithm given above does not depend on any special spatial discretization. For the
numerical examples to be given now, a Cartesian staggered-grid arrangement was applied
defining the scalar variables at the cell centers, the horizontal vector components on the
vertical cell interfaces and the vertical components on the horizontal interfaces. As already
mentioned, the convection-diffusion system (4.2.5) uses an explicit MUSCL-type scheme for
the convective terms, and implicit central differences for the diffusive part. The sonic system
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Figure 10. Streamline visualization of the lid driven
cavity flow at Re= 1000.

Figure 11. Horizontal velocity at the vertical cross
section through the center of the cavity.

(4.2.10) is discretized with implicit central differences for all terms.

Gresho and Chan’s transported vortex.The first test case is an incompressible Euler calcu-
lation proposed by Gresho [43, 44] as a test case with known, but non-trivial solution. A
triangular vortex is convected through a channel while revolving around its center. It should
be transported without any damping of the vorticity. Figure 9a shows the vorticity distribution
at the initial stage, Figures 9b and 9c the vorticity after one and two turnarounds. The vortex
is transported one spatial unit to the right during one revolution.

It can be clearly seen, that the vorticity is well reproduced. There is only limited damping
of the magnitude; the distortions are due to the fact that a rotational symmetric vortex has
to be approximated on a Cartesian grid. These asymmetries are reduced with grid refinement.
The calculations shown here have been carried out on a 160×40 mesh for a 4×1-units domain.

The standard driven cavity test.This second test case involves an incompressible viscous flow
at Reynolds number Re= 1000. It is characterized by a large vortex in the center of the cavity
and two smaller ones in the lower left and right corners, see Figure 10.
The computational domain is the unit square, discretized by 100× 100 grid points. At first,
the standard incompressible test case is compared to results in the literature. Figure 11 shows
the horizontal velocity at the vertical cross section atx = 0·5, Figure 12 the vertical velocity
aty=0·5. The solid lines show the results obtained with the MPV code. They are in very good
agreement with the benchmark solutions obtained by Ghiaet al.[45] on a 129×129 Cartesian
grid.
Driven cavity with differentially heated side-walls.The driven-cavity test case can be extended
to the weakly compressible regime by differential heating of the vertical walls. The left wall
was kept at constant temperature of 30◦C (293·6K). The right wall was heated to 293·6K +
1T . As long as the temperature difference1T is small, the Boussinesq approximation can
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Figure 12. Vertical velocity at the horizontal cross
section through the center of the cavity.

Figure 13.Isotherms for a driven cavity with differen-
tially heated vertical walls with temperature difference
1T = 150 K..

be applied. Results of calculations with the full MPV-scheme and incompressible calculations
involving the Boussinesq approximation were quite similar in this case. For1T larger than a
few degrees, the Boussinesq approximation is no longer valid. To show this discrepancy, we
applied a temperature difference1T = 150K and compared the results of the MPV scheme
with those obtained by an incompressible Boussinesq approximation. The Mach number for
this test case isM = 0·0005, the Prandtl numberPr = 0·7 and the Reynolds number Re=
1000 as above. Figure 13 shows the temperature distribution of the steady state.

Figures 14 and 15 show the temperature profiles at the left and right walls.
The solid lines give the results of the MPV scheme, the dashed lines are the results obtained by
means of an incompressible solver with Boussinesq approximation. It can be clearly seen that
the incompressible code shows a much thicker thermal boundary layer than the MPV scheme.
This is due to the fact that it cannot reproduce the thermal density changes.

Baroclinic vorticity generation by long-wave acoustics.The next test problem considered
is again a weakly compressible one and shows the approximation of acoustic waves. Here,
we want to show the interaction of a long-wave-length acoustic wave with small entropy
fluctuations on the local length scale. The initial data,

ρ(x, y,0) = 1·0+ 0·2M(1·0+ cos(πx/L))+8(y)
p(x, y,0) = 1·0+Mγ (1·0+ cos(πx/L))

u(x, y,0) = √γ (1 · 0+ cos(πx/L)),

v(x, y,0) = 0·0,
with
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Figure 14. Horizontal velocity at the vertical cross
section through the center of the cavity.

Figure 15. Vertical velocity at the horizontal cross
section through the center of the cavity.

8(y) =


0·8
Ly
y for 0≤ y ≤ 1

2Ly,

0·8
Ly

(
y − 1

2Ly)
)− 0·4 for 1

2Ly ≤ y ≤ Ly,
represent a saw-tooth-like density stratification in the vertical direction set into motion by a
right-running acoustic pulse in the horizontal direction. AtM̂ = 1/20, the computational
domain is a double-periodic domain of[−L : L] × [0 : Ly] with L = 1

M̂
= 20 and

Ly = 2L
5 = 8, just long enough to let one period of the acoustic wave take place. Due to

the non-homogeneous density, the fluid is subject to a higher acceleration for lower density
values and a lower acceleration at higher densities. This leads to the well-known phenomenon
of baroclinic instability. A shear layer of sinusoidal shape is generated and moved with the
acoustic wave. Figure 16 shows the density at different times. The first plot shows the initial
data, the second one the first forming of the sinusoidal shape at timet = 6. The interface
starts rolling up and small vortices are formed. This can be clearly seen at the later times
t = 9,11,14.
The smallest structures resolved have a thickness of a few grid zones length, smaller ones are
damped out by numerical viscosity. In Figure 17 vorticity contours are given at the same times.
It can be seen that in the initially vortex-free flow two thin regions of vorticity are created along
the density interface. As the interface starts rolling up, counter-rotating vortices are formed.
These computations demonstrate that the interaction of the long-wave-length acoustic wave
with the local flow structures creates small-scale vortices.

A model problem for the flow in a disk brake.Here we discuss some simulations of the cooling
flow in a simplified disk-brake facility. The key issue in this problem is the increase of the rate
of heat transport due to the stripping of the boundary layer by the brake block. To study this
problem, the heat-transport coefficient is evaluated qualitatively and the physical phenomena



308 R. Klein et al.

Figure 18 Temporal development of the temperature distribution in the brake-facility.
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Figure 16.Density at timest = 0,6, 9, 11,14. Figure 17.Vorticity at timest = 0, 6, 9,11,14.

are investigated. For the sake of simplicity the brake block is modeled as a fixed standing
rectangular obstacle. The brake disk moves at constant velocity. The starting point is the
dimensionless compressible Navier-Stokes equations. With following reference values

ρref = 1·205 [kg/m3]
Tref = 303·15 [K]
pref = 1·0499× 105 [N/m2]
lref = 2× 10−2 [m]
cp = 1· 0006× 103 [J/(kg K)]
λ = 2.637× 10−2 [W/(m K)]
Uref = 21·8 [m/sec2]
ν(T = 500◦C) = 7·890× 10−5 [m2/sec]
µ(= ρref · ν) = 9·50× 10−5 [kg/(m sec)],

the three dimensionless numbers, Reynolds-, Prandtl- and Mach number, important for the
flow become

Re= 5525·98

Pr= 3·627

M = 0·0738.

The total computing area covers the range from−18lref to 18lref in thex-direction and from
0lref to 6lref in they-direction. The brake block is fixed at the origin and has length 6lref and
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height 1lref. We have used an equidistant grid in thex-direction (1x = 0.1lref). In the y-
direction we adopted a non-equidistant grid (1ymin = 0 · 03lref) for a better resolution in the
boundary layer. For the simulation we assume periodic conditions for all variables at the left
and right boundary, outflow conditions at the upper boundary and no-slip conditions at the
brake block and brake disk. As initial condition the state at rest is assumed. The temperatures
at the brake block and brake disk are given as 500◦C and at the outflow 30◦C. In Figure 18
the time-development of the hot temperature boundary layer is shown. During the so-called
’stripping-process’ of the boundary layer at the brake block a strong left-rotating vortex devel-
ops rapidly and interacts with the outer flow. This process transports heat away from the brake
disk very efficiently. Behind the brake block cold air is in contact with the hot brake disk and
the heat-transport coefficients are large. A new boundary layer forms in this region.

For small brake-disk velocities and low temperatures, the numerical results are similar to
those of an incompressible simulation. For higher temperatures (about 500◦C when braking
while driving down a hill or during sudden braking at high velocities) a compressible calcu-
lation is necessary. Future work will examine the stability of the boundary layer. By use of
the linear stability analysis based on the Orr-Sommerfeld equations appropriate perturbations
will be overlaid to the flow field.

4.2.3. Summary

The numerical results for the test problems clearly demonstrate that the MPV concept works
very well in the incompressible as well as in the low-Mach- number regime. No modifications
are necessary for viscous and inviscid fluid flows. The basics are the results of a multi-
scale asymptotic analysis and these results are used to motivate a pressure decomposition
where every term of the asymptotic series plays a different physical role. The asymptotic
equations themselves are only used to obtain estimates which have to be corrected. Therefore,
the scheme always solves the full compressible Euler or Navier-Stokes equations and is not
restricted to very small Mach numbers, as it would be when solving the asymptotic equations
only. The MPV concept proposed may be used to extend any incompressible solver to the
low-Mach-number regime.

4.3. A FULLY CONSERVATIVE ZERO-MACH-NUMBER VARIABLE -DENSITY FLOW SOLVER

The conservation laws governing the evolution of a compressible calorically perfect gas are
given by (2.1.15). Neglecting viscous effects, chemical reactions and taking into account a
gravitational force field, we have these equations:

ρt +∇ · (ρv) = 0 ,

(ρv)t +∇ · (ρv ◦ v)+ 1

M2
∇p = 1

Fr2
ρg,

(ρe)t +∇ · ((ρe + p)v) = M2

Fr
ρv · g,

(4.3.1)

with the equation of state

p = (γ − 1)(ρe − 1
2M2ρv · v). (4.3.2)

After scaling, the accelerationg is a constant unit vector. All variables are dimensionless and
O(1). Beside the Mach number M, a new characteristic number appears in (4.3.1). This is the
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Froude number Fr:= vref/
√
glref. In the limit of M → 0, but finite Fr, solutions of (4.3.1)

exhibit the singular behavior analyzed in Section 2.1 (see also [2], [46], [6]). Let us stress
the issues which are particularly relevant for the computation of numerical approximations of
(4.3.1) in the M→ 0 limit:

1. ∇p tends to zero, but∇p/M2 tends to some non-trivial function∇p(2).

2. The total energy per unit volumeρe tends top/(γ − 1) and the right-hand side of the
energy equation tends to zero. Thus, the energy fluxes∇ · ((ρe + p)v) must satisfy a
constraint for the time derivative ofρe to have zero gradients. This is a constraint for the
divergence of the velocity fieldv.

3. Assume this constraint is∇ · v = 0 (this is a special, but important case). Then the first
equation of (4.3.1) requires the densityρ to be simply advected along particle paths. Thus,
if ρ is constant at the initial time (and density variations are not entering the computational
domain through the boundary), it should remain constant at any time.

4. The eigenvalues of the Jacobian of the flux function associated with the homogeneous
part of (4.3.1) degenerate: These eigenvalues arev · n andv · n ± c/M with c2 = γp/ρ
andn any unit vector.

Due to this singular behavior, when attempting to compute numerical solutions of (4.3.1)
for M → 0, using a standard finite-volume method for compressible flow, one faces at least
the following difficulties:

1. A finite arithmetic single variable representation of the pressurep does not allow a mean-
ingful computation of∇p/M2.

2. The energy fluxes do not satisfy the correct divergence constraint. As a consequence the
total energy does not tend top/(γ − 1) and has non-zero gradients.

3. The velocity field does not satisfy the correct divergence constraint.

4. The numerical method fails to compute the correct rate of change of density along particle
paths. For the special case in which the divergence constraint for the velocity is simply
∇ ·v = 0, the numerical method fails to preserve an initially constant density distribution.

5. Explicit methods suffer from a Courant-Friedrichs-Lewy [47] time step stability restric-
tion of the kindδt < O(M).

The first and the last difficulties can be overcome by replacing (4.3.1) with its asymptotic
limit:
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ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ◦ v)+ ∇p(2) = 1

Fr2
ρg,

(ρe)t +∇ · ((ρe + p)v) = 0,

p = (γ − 1)ρe ,

p = p(0)(t) .

(4.3.3)

Let us comment on the above equations. According to the results discussed in Section 2.1, the
pressure fieldp has been decomposed into a zero-gradient time dependent thermodynamic
componentp(0) plus a second-order perturbation M2p(2). The thermodynamic pressurep(0)

is given by (2.1.38). For(γ − 1)(ρe)t to be equal to dp(0)/dt , the energy fluxes through the
boundary∂V of any arbitrary control volumeV ⊂ � must satisfy the following constraint

1

|V |
∮
∂V

(ρe + p)v · nds = − 1

γ − 1

dp(0)

dt
. (4.3.4)

Sinceρe + p has no variations in space, Equation (4.3.4) is a divergence constraint for the
velocity field v. It implicitly defines the perturbation pressurep(2): At any time the gra-
dients∇p(2) must guarantee that the accelerationvt has a well-defined spatially-constant
time-dependent divergence. We can compute this divergence by taking the time derivative
of Equation (4.3.4). In the special case dp(0)/dt = 0 (closed vessel, periodic boundary
conditions, etc.) Equation (4.3.4) becomes the well-known∇ · v = 0 constraint of the ‘in-
compressible’ Euler equations and∇p(2) a Lagrangian multiplier projecting convective and
gravitational accelerations onto the space of divergence-free vector fields.

System (4.3.3) enjoys a time-step stability restriction of the kindδt < O(1) and explicitly
introduces a two-variable representation of the pressure field which allows a meaningful finite
arithmetic computation of pressure gradients in theM = 0 limit. Notice that, because of the
implicitness ofp(2), (4.3.3) isnota hyperbolic system. Our aim is to solve (4.3.3) numerically
by means of a finite-volume method in conservation form:

Un+1
V = Un

V −
δt

|V |
∑
I∈I∂V
|I |FI + δtWV ∀V ∈ V. (4.3.5)

HereV ∈ V is a cell of a conformal space discretization of the flow domain� and|V | is the
volume ofV . I ∈ I is an interface between two adjacent cells and|I | is the area ofI . By V, I
we denote the set of all cells and of all interfaces, respectively.I∂V ⊂ I represents the set of
those interfaces which lay on the boundary∂V of V . Un

V is a numerical approximation to the
averageunV of the solutionu of (4.3.3) over the cellV at timetn. FI andWV are numerical
approximations to the averagesfI andwV of the flux functionf and of the right-hand sidew
of (4.3.3). These averages are taken over the time interval[tn, tn+1 := tn + δt] and over the
interfaceI and the cellV for fI andwV , respectively:

u :=


ρ

ρv

ρe

 , f :=


ρv · n
vρv · n+ p(2)n
hρv · n

 , w :=


0

ρg/Fr2

0

 .
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In the above expressionsh is the enthalpy per unit mass of the gas:ρh := ρe + p. Let us
focus the attention on the numerical fluxFI :

FI := f(UI ,nI ) =


(ρv)I · nI

vI (ρv)I · nI
hI (ρv)I · nI

+


0

p
(2)
I nI

0

 . (4.3.6)

We want to construct numerical fluxesFI or, equivalently, interface averagesUI , that fulfill
the following requirements:

1. On smooth solutionsFI approximates the average fluxfI up to errors of orderO(δt2).

2. The energy fluxes satisfy the divergence constraint

1

|V |
∑
I∈I∂V
|I |hI(ρv)I · nI = − 1

γ − 1

p
(0),n+1
V − p(0),nV

δt
, ∀V ∈ V . (4.3.7)

This is a discrete form of the divergence constraint (4.3.4) which is consistent with the
finite-volume method (4.3.5).

3. The mass fluxes guarantee the correct rate of change of density along particle paths. Notice
that, in the special case dp(0)/dt = 0, this can be achieved if (and only if) the interface
velocitiesvI which are responsible for the advection of the density are divergence-free in
the sense that

1

|V |
∂V∑
I∈I
|I | vI · nI = 0 .

4. The discrete velocity fieldvn+1
V satisfies some discrete form of the divergence constraint

(4.3.4).

In the next subsection we describe how to construct numerical fluxes which fulfill the require-
ments listed above. This is done via a semi-implicit procedure. First, we compute an explicit
approximation to the fluxes of an auxiliary hyperbolic system. In our implementation this
is done in a predictor stage in which the influence of pressure gradients on the convective
fluxes is neglected over a half time step. Secondly, a Poisson-type equation for cell-centered
pressuresp(2)V is solved. These pressures allow the computation of convective fluxes of mass
and energy that fulfill requirement 1) to 3) and the update of density and total energy cell
averages. At this point the grid-cell interface pressure-induced momentum fluxesp

(2)
I nI are

yet unknown. This pressure is obtained by solving another suitable discrete form of the energy
conservation law. This yields a second elliptic problem. The solution of this problem leads to
a new cell-centered velocity fieldvn+1

V whichexactlysatisfies a discrete divergence constraint
that is consistent with energy conservation. For a detailed description of the flux construc-
tion algorithm and of the discrete operators involved in such construction we refer to [7]. In
Section 4.3.2 we discuss some numerical results.
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4.3.1. Semi-implicit construction of numerical fluxes

The auxiliary system

ρt +∇ · (ρv) = 0 ,

(ρv)t +∇ · (ρv ◦ v)+ ∇p = 1

Fr2
ρg ,

(ρe)t +∇ · ((ρe + p(0))v) = 0 ,

(4.3.8)

with equation of state

p = (γ − 1)ρe (4.3.9)

and flux function

f ∗ :=


ρv · n

v ρv · n+ pn
h(0) ρv · n

 , ρh(0) := ρe + p(0)

enjoys the following properties:

1. The system has the same convective fluxes as the zero-Mach-number governing equations
(4.3.3).

2. The system is hyperbolic.

3. The eigenvalues of the Jacobian of the flux functionf∗ are v · n and v · n ± c with
c2 := (γ − 1)h(0) (see [6]).

4. Solutions of (4.3.8) satisfy, for homogeneous pressurep and zero flow divergence at time
t = 0, the following estimates at timet > 0 (see [7]):

∇ · v = O(t), ∇p = O(t2).
Let F∗I be numerical fluxes obtained with an explicit high-resolution upwind method for

the auxiliary system (4.3.8). In our implementation, for instance, the method is a MUSCL
scheme (see [48], [49], [50], [51], [52]) based on slope limiting of characteristic variables
and the numerical flux proposed by Einfeldt [53] which has been extended for system (4.3.8)
according to the characteristic analysis presented in [6].

Due to the first and the last of the above items, the difference between the rate of change
of the conserved variablesu as given by (4.3.3) and the rate of change ofu in the auxiliary
system (4.3.8) is, over short timest and up to termsO(t2):

ut |(4.3.3) − ut |(4.3.8) = −


0

∇p(2)
0

 . (4.3.10)



Asymptotic adaptive methods for multi-scale problems in fluid mechanics315

On each interfaceI ∈ I the numerical fluxFI can therefore be obtained from the auxiliary
numerical fluxF∗I by correcting the interface average momenta(ρv)I and velocities(v)I as
follows:

(ρv)I = (ρv)∗I −
δt

2
(∇p(2))I , (4.3.11)

(v)I = (v)∗I −
δt

2

1

ρI
(∇p(2))I . (4.3.12)

The term(∇p(2))I represents the interface average gradients of the unknown pressurep(2). Let
us approximatep(2) with a piecewise linear function between cell-centered valuesp

(2)
V . Insert-

ing (4.3.11) into the discrete divergence constraint (4.3.7), one obtains a discrete Poisson-type
problem for the cell-centered valuesp(2)V . The associated discrete Laplace operator has an
enthalpy-weighted five points (in two space dimensions) compact stencil.

Once(ρv)I , (v)I have been computed (ρI = ρ∗I andhI = h∗I because no correction in
density or energy is needed, see (4.3.10)) the convective part ofFI is known and one can
update both density and energy. Notice that, per construction

(ρe)n+1
V = (ρe)nV − δt

1

|V |
∑
I∈I∂V
|I |hI(ρv)I · nI

= (ρe)nV + δt
1

γ − 1

p
(0),n+1
V − p(0),nV

δt
= 1

γ − 1
p
(0),n+1
V .

(4.3.13)

For the computation of(ρv)n+1
V , however, we still need the pressure component of the momen-

tum fluxp(2)n at the interfaces. This is the last term of the numerical flux (4.3.6). This pressure
is computed by imposing requirement number 4),i.e., the discrete velocity fieldvn+1

V shall
satisfy some discrete form of the divergence constraint (4.3.4). Let(ρv)∗∗V be the intermediate
cell averages

(ρv)∗∗V := (ρv)nV −
δt

|V |
∑
I∈I∂V
|I |vI (ρv)I · nI + δt ρg

Fr2
, ∀V ∈ V . (4.3.14)

The finite-volume method (4.3.5) for the final cell averages(ρv)n+1
V can be expressed in terms

of (ρv)∗∗V and of the unknown interface pressuresp(2)I as:

(ρv)n+1
V = (ρv)∗∗V −

δt

|V |
∑
I∈I∂V
|I |p(2)I nI , ∀V ∈ V . (4.3.15)

Let V be adual discretization of�. V consists of control volumesV centered around the
nodes of the original grid. The interfaces between the cells ofV are denoted byI . As usualI
is the set of all such interfaces.

In Figure 19 a cell-centered and a node-centered control volume,V andV , are drawn
for a two-dimensional Cartesian grid. We computep(2)I by linear interpolation on the set of
nodal valuesp(2)

V
. These nodal values are computed following an idea originally proposed by

Geratz [54]. Consider a second-order finite-volume method for the total energyρe on the dual
discretization:

(ρe)n+1
V
:= (ρe)n

V
− δt

|V |
∑
I∈I∂V

|I |
2

(
(ρhv)n

I
+ (ρhv)n+1

I

)
· nI , ∀V ∈ V (4.3.16)
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V

V

Figure 19 Cell (V ) and node centered (V ) control volumes; cell centers, nodes and the midpoints of the interfaces
are marked by circles, squares and crosses, respectively

and require the energy fluxes through the interfaces of the dual discretization to satisfy the
divergence constraint

δt

|V |
∑
I∈I∂V

|I |
2

(
(ρhv)n

I
+ (ρhv)n+1

I

)
· nI = −

1

γ − 1

p
(0),n+1
V

− p(0),n
V

δt
, ∀V ∈ V .

(4.3.17)

Equation (4.3.17) is a discrete form of the divergence constraint (4.3.4) which is consistent
with the finite-volume method (4.3.16).p(0),n+1 is the same as was computed and used in
the first projection step. The dual interface averages can be expressed to the desired-order
accuracy by means of cell averages:

(ρhv)
(·)
I
= LV

I

(
(ρhv)

(·)
V

)
. (4.3.18)

LV
I

is a (linear) operator mapping cell averages into interface averages. Together with (4.3.15)
and (4.3.18), Equation (4.3.17) defines a discrete Poisson-type problem for the nodal values
p
(2)
V

. This problem is the equivalent of (4.3.7), (4.3.11) on the dual grid. Its associated discrete
Laplace operator has an enthalpy-weighted nine points (in two space dimensions) compact
stencil. In the special case dp(0)/dt = 0 the nodal valuesp(2)

V
guarantee that the discrete

velocity fieldvn+1
V satisfies the divergence constraint

1

|V |
∑
I∈I∂V
|I |LV

I
(vnV) · nI = 0 ⇒ 1

|V |
∑
I∈I∂V
|I |LV

I
(vn+1

V ) · nI = 0 . (4.3.19)

We have fulfilled requirements 1) – 4) and the construction of the numerical fluxesFI is
completed.

4.3.2. Numerical results

We discuss the numerical results obtained on five test problems. The first four problems are
chosen to assess the accuracy and the efficiency of the method and test its capability to cope
with large density variations and small-scale gravity-driven flows. For these tests either the
exact solution or at least some properties of the exact solution are known. This allows a
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meaningful validation of the method and provides a flavor of the difficulties that must be
faced in the numerical simulation of more realistic flows. Problem number five is included
to show that the proposed numerical method can be extended to cope with boundary-driven
compression/expansion, viscous forces and heat transfer. All test problems can be run with
trivial geometries and boundary conditions.

The computations have been performed on regular Cartesian grids. The discrete operators
and the linear systems for the cell-centered and for the node-centered pressures are those
explicitly given in [7]. These two linear systems must be solved at each time step. This has
been done by means of a multi-grid preconditioned conjugate-gradient method. The differ-
ence with respect to the standard conjugate-gradient solver is that, in each iteration, the new
residual vector is computed by applying a multi-grid cycle to the previous residual vector.
There are several ways of visiting the grid levels during the multi-grid procedure, such as a
V-cycle, W-cycle, F-cycle [55] and nested cycle. In our case, the F-cycle turned out to provide
the best contraction rate. As smoother a Gauss-Seidel method was used with two pre- and
post- smoothing steps on each grid level. In two space dimensions a standard nine-point
prolongation operator was used. This operator is defined through bilinear interpolation. In
three dimensions trilinear interpolation provides a 27-point prolongation operator. The adjoint
prolongation operator served as restriction operator. In the presence of large density variations,
the coefficients of both linear systems can change by orders of magnitude. In this case the
linear coarse-grid operators need to be constructed by Galerkin’s approximation [55].

As expected, the computations show that the CPU time needed to solve the systems de-
pends linearly on the number of unknowns. The solution of the linear systems accounts for
about 95% of the time required for a computation and demands a memory allocation of
roughly one K-byte per computational point. In each solution the residuals

r2(p
(2)
V ) :=

∥∥∥∥DI
V

(
(ρh0v)∗I

)− δt
2
DI

V

(
h

0,∗
I GV

I

(
p
(2)
V

)) ∥∥∥∥
2

,

r2(p
(2)
V
) :=

∥∥∥∥DV
V

(
hn+1

V (ρv)∗∗V
)+DV

V

(
(ρhv)nV

)− δtDV
V

(
hn+1

V GV
V

(
p
(2)
V

)) ∥∥∥∥
2

have been driven down to 10−7. In the above definitions‖aV‖2 represents the Euclidean norm
of a vector whose components are the valuesaV , i.e.,

‖aV‖2 :=
(∑
V∈V

a2
V

)1/2

and similarly for‖aV‖2.

Convergence studies.This test problem was originally proposed in Almgrenet al. [56]. It has
been designed to assess the accuracy of the method on constant-density flows. For any timet

and 0< x < 1, 0< y < 1, the velocity field

u(x, y, t) := 1− 2 cos(2π(x − t)) sin(2π(y − t)),
v(x, y, t) := 1+ 2 sin(2π(x − t)) cos(2π(y − t)),

together with the pressurep(2)(x, y, t)

p(2)(x, y, t) := − cos(4π(x − t))− cos(4π(y − t))
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Table 1. Constant density: errors and convergence rates in the 2-norm
and in the maximum norm.

32× 32 Rate 64× 64 Rate 128× 128

2-norm 0·193646 2·07 0·0458949 2·10 0·010705

max-norm 0·236456 2·09 0·0553504 2·11 0·012821

is an exact solution of the zero-Mach-number governing equations (4.3.3) with constant pres-
surep(x, y, t), constant densityρ(x, y, t) and periodic boundary conditions on the unit square.
Starting fromt = 0, we have computed numerical approximationsuNi,j to the cell-averages
u(xi, yj , t

N) of the exact velocityu at time tN = 3. Similarly vNi,j , ρ
N
i,j are numerical ap-

proximations to the cell-averagesv(xi, yj , tN ) and ρ(xi, yj , tN) of the exactv, ρ at time
tN = 3.

Three equally spaced regular Cartesian grids of spacingsh = 1/32, h = 1/64 andh =
1/128 have been used on the unit square. On each grid the time step was chosen according to
a fixed Courant number of 0·8. The initial cell averages(ρv)0i,j have been computed forv0

i,j

to be discretely divergence free

(ρv)0i,j = (ρv)(xi, yj ,0)−GV
i,j

(
p
(2),0
V

)
,

i.e., the initial pressurep(2),0
V

is a solution of the Poisson problem

DV
V

(
1

ρ0
i,j

GV
i,j

(
p
(2),0
V

))
= DV

V

(
(ρv)(xi, yj ,0)

ρ0
i,j

)
with ρ0

i,j = ρ(xi, yj ,0) = 1. In the MUSCL scheme for the computation of the auxiliary
numerical fluxesF∗I unlimited slopes have been used. For each grid we have measured the
2-norme2 and the maximum norme∞ of the cell-errorei,j at timetN = 3:

ei,j :=
∣∣ρ(xi, yj , tN )− ρNi,j ∣∣+ ∣∣u(xi, yj , tN)− uNi,j ∣∣+ ∣∣v(xi, yj , tN)− vNi,j ∣∣ ,

e2 :=
∑

i,j

(
ei,j h

)21/2

, e∞ := max
i,j

{
ei,j
}
.

Notice that this is essentially a measure of the velocity error: due to the exact projection of the
interface velocity, the density error in the 2-norm is of the same order asr2(p

(2)
V ), i.e., 10−7.

Table 1 showse2, e∞ on the three grids, together with the corresponding convergence rates.
These have been computed as follows: Given,e.g., coarse and fine grid 2-norm errorse2,c, e2,f

and the corresponding grid spacingshc, hf the convergence rate is

log(e2,c/e2,f )

log(hc/hf )
.

We have constructed the exact velocity field (4.3.2) by differentiating the streamline function
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Table 2. Variable density: errors and convergence rates in the 2-norm
and in the maximum norm.

32× 32 Rate 64× 64 Rate 128× 128

2-norm 0·229332 2·02 0·0563924 2·16 0·0125899

max-norm 0·263492 1·98 0·0664518 1·68 0·0207160

φ(x, y, t) := y − x + 1

π
cos(2π(x − t)) cos(2π(y − t))

and takingu := ∂φ/∂y, v := −∂φ/∂x. The functionφ represents a vortical motionϕ :=
φ − y + x superimposed on a translation. The vortical motion is simply advected by the
velocity fieldv, i.e.,

Dϕ

Dt
:= ∂ϕ

∂t
+ v · ∇ϕ = 0 ,

as one can verify by inspection. Thus, variable-density exact solutions to the governing equa-
tions (4.3.3) can be constructed if we take

ρ(x, y, t) := f (ϕ)
with some smooth functionf . We used

f (ϕ) := 2+ (πϕ)2 . (4.3.20)

The constant on the right-hand side is taken to avoid negative densities. The square ensures
that densities monotonically increase from the center to the outer boundary of each vortex:
a density distribution with local maxima in vortex cores would undergo Rayleigh-Taylor
instability. With (4.3.20) an exact solution for the density of (4.3.3) is

ρ(x, y, t) := 2+ 0·5 cos2(2π(x − t)) cos2(2π(y − t)).
In Table 2 the error norms for the variable-density computations are shown. As for the constant-
density case we obtain second-order accuracy both in the 2-norm and in the maximum norm.

Advection of a vortex.We consider the advection of a vortex in a channel. The computational
domain is the rectangle[0,4] × [0,1]. The upper and lower boundaries are walls; periodic
boundary conditions are imposed at the left and right boundaries. The grid consists of 80×20
cells. The initial condition is:

ρ(x, y,0) = 1, u(x, y,0) = 1− vθ(r) sinθ,

p(x, y,0) = 1, v(x, y,0) = vθ (r) cosθ

with

vθ(r) =


r/0·2 if 0 < r < 0.2

2− r/0·2 if R < r < 0.4 and r= √(x − 0·5)2+ (y − 0·5)2
0 if r > 0·4
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Figure 20. Advection of a vortex at timest =0·0, 1·0, 2·0, 3·0: 9 contour lines of the stream-function in
[0·02,0·18]. Unlimited slopes (top), monotonized central-difference (middle) and Sweby’s limiter withk := 1·8
(bottom).

For the above initial data the exact velocity fort > 0 can be computed:u(x, y, t) = u(x −
u∞t, y,0) andv(x, y, t) = v(x − u∞t, y,0), i.e., the initial data are simply advected by the
background velocityu∞. This problem was originally proposed by Greshoet al. [57].

In Figure 20 we show contour lines of the stream function for three computations. They
have been done using different slope limiters in the MUSCL step of the Godunov-type method
for the computation of the auxiliary fluxes. Due to the rough discretization the results exhibit
a significant deformation of the vortex. In contrast to the results shown in [57] Figure 13,
however, the core of the vortex is advected along the axis of the channel in agreement with
the exact solution. The first computation (unlimited slopes) shows a loss of vorticity compa-
rable with [57] by exhibiting a stronger deformation of the vortex. The second and the third
computations (monotonized central-difference and Sweby’s limiter withk := 1·8, see,e.g.,
Schulz-Rinne [58]) show a slightly stronger deformation of the initial vorticity distribution,
but a much better conservation of the maximum level of vorticity.

Driven cavity flows.The driven-cavity test problems proposed in [59] have been the subject of
many numerical computations (see,e.g., [60], [61]), and the Section 4.2 above. For Reynolds
numbers (Re) up to 1000 most computations seem to converge towards a steady state and
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there is an excellent agreement between stationary solutions obtained with different numerical
schemes. Thus, these problems are very well suited to validate new numerical methods. Here
driven cavity flows at Reynolds numbers 100 and 1000 have been computed. Our main goals
are:

• Show that the method can be easily extended to cope with viscous flows;

• Investigate the behavior of the method with respect to the coupling between pressure and
velocity fields;

• Investigate the behavior of the method with respect to convergence towards stationary
solutions;

• Compare our numerical results with established reference solutions.

In agreement with [59], we consider a viscous zero-Mach-number flow with no heat con-
duction. Viscous effects only enter in the momentum equation through a viscous stress and are
accounted for via operator-splitting techniques. A delicate issue in the numerical computation
of incompressible flows is that of the coupling between pressure and velocity fields. For
finite discretizations this problem (often referred to as ‘local grid decoupling’ or ‘checker-
board instability’) can be described as follows. Assume that the null space of the discrete
gradient operator, ker(GV

V), contains highly oscillating fields. SinceGV
V has a local stencil,

this is usually the case whenever dim(ker(GV
V)) > 1. If the solutionpV of the Poisson-type

problem has components in ker(GV
V), one obtains pressure oscillations which do not influence

the velocity field: pressure and velocity field decouple.
For two-dimensional equally spaced Cartesian grids and the implementation described in

[7] one finds that dim(ker(GV
V)) = 2 and ker(GV

V) contains, besides constant pressurespc
V

,
a non-trivial highly oscillating modepo

V
. Therefore, we expect to observe pressure-velocity

decoupling whenever the iterative linear system solver converges towards solutionspV with
components in ker(GV

V). The method of conjugate gradients preserves, by exact arithmetics,
the components ofpk

V
in ker(GV

V). Since we always start our iteration withp0
V
:= 0 we expect

a numerical solution obtained in a reasonable number of iteration steps to be oscillation free.
This is confirmed by our numerical results. On the other hand, numerical solutions obtained
through a random choice ofp0

V
may exhibit pressure-velocity decoupling.

The understanding of the pressure-velocity decoupling in the limit of vanishing grid size
requires a deeper analysis. We have investigated numerically the effects 1) of grid refinement
at constant convection-based Courant numberCFL of 0·8 and 2) of time-step refinement for
a fixed grid size. Some results are shown in Figures 21 and 22. Neither in the first nor in the
second case do we observe the onset of pressure-velocity decoupling. Figure 23 shows the
time history of the residual

rn2 :=
∑
V∈V

h2‖Un
V − Un−1

V |‖2

for a Re= 1000 computation on several grids. The residual is plotted versus the number of
computational steps. The cost of a single step on a 64× 64 grid is of about 1·3 seconds on a
DEC Alpha 21164 CPU running at 500 MHz. For the 128× 128 grid-cells computation pres-
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Figure 21. Driven cavity at Re= 100,C =0·8: 30 contour lines of the nodal pressurep(2)V in [−0·4,0·4]. 64× 64
(left) and 256× 256 (right) grid cells.

Figure 22. Driven cavity at Re= 100, 64×64 grid cells: 30 contour lines of the nodal pressurep
(2)
V in [−0·4,0·4].

C =0·08 (left) andC =0·008 (right).

sure and streamlines of the numerical solution after 5000 time steps are shown in Figures 24
and 25. These results are in a good qualitative agreement with the ones presented by Ghia
et al. [59, p. 400]. For a more quantitative comparison the horizontal (vertical) component of
the velocity along the vertical (horizontal) line through the geometric center of the cavity have
been drawn in Figure 26. The solid line represents the numerical solution obtained with the
present method. The dots are values of a reference solution taken from [59]. The accuracy of
this solution has been confirmed by many independent computations.

Falling droplet.A heavy ‘droplet’ falls through a light fluid atmosphere and impacts into the
surface of the heavy fluid in a cavity. The density ratio is 1000:1 and the Froude number equal
to one. The flow is assumed to be inviscid and there is no account for surface tension or for a
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Figure 23. Driven cavity at Re= 1000: Residual versus number of iterations for 32× 32, 64× 64 and 128× 128
grid cells computations; coarser grid solutions have been taken as initial data for finer grid solutions.
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Figure 24. Driven cavity at Re= 1000, 128× 128 grid cells: 30 contour lines of the nodal pressurep(2)
V

in
[-0·4;0·4] (left) and streamlines (right). Streamline values and labels from [41].
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Figure 25. Driven cavity at Re=1000, 128× 128 grid cells: streamlines in the left and right bottom secondary
vortices. Values and labels from [41].
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Figure 26. Driven cavity at Re=1000, 128× 128 grid cells: horizontal (vertical) component of the velocity along
the vertical (horizontal) line through the geometric center of the cavity; present results (solid line) and reference
solution from [41].

change of the equation of state (hence, the quotes on ‘droplet’!). The computational domain is
the rectangle[0,1] × [0,2]. We present both two- and three-dimensional computations. The
goal is to investigate the capability of the method to cope with large density variations.

From a numerical point of view the effect of density variations is to increase the condition
number of the discrete Poisson-type operators associated with the numerical computation of
the pressurep(2). One might expect poor convergence in the iterative solution of the linear sys-
tems and, in the worst case, oscillations in the pressure fieldp

(2)
I . Since our interface pressures

p
(2)
I are computed via a discrete Poisson-type operator which, for two-dimensional equally

spaced Cartesian grids, exhibits local grid decoupling, we are thus particularly interested in
the behavior ofp(2)I in the two dimensional case.
Two-dimensional case.This problem was originally proposed in Puckettet al. [62] to test a
tracking method for incompressible variable-density flows. Here the interface between light
and heavy fluid is captured, but we still expect our second-order method to describe properly
the main features of the flow. The computational grid consists of 64× 128 cells. The initial
data are:

ρ(x, y,0) =
{

1000·0 if 0·0≤ y ≤ 1·0 or 0·0≤ r ≤ 0·2,
1·0 if 1·0< y ≤ 2·0 or 0·2< r,

p(x, y,0) = 1, v(x, y,0) = 0 and r =
√
(x − 0·5)2+ (y − 1·75)2 .

Figure 27 shows density contours at a sequence of output times. After the impact of the droplet
some areas of lighter fluid appear within the heavy fluid (last three frames). This is consistent
with the results shown in [62] where this effect was referred to as ‘trapped air bubbles’. For
this sequence we monitored the cell interface pressurep

(2)
I

without noticing any spurious os-
cillations or local grid decoupling effects. The multi-grid preconditioned conjugate-gradients



Asymptotic adaptive methods for multi-scale problems in fluid mechanics325

t = 0.000 t = 0.500 t = 0.875

t = 1.125 t = 1.250 t = 1.375

Figure 27. Two-dimensional falling ‘droplet’ atFr = 1 and density ratio 1000: Contour lines of density in
[1,1000].

technique allows the iterative solution of the linear systems for the pressure in about the same
number of iterations as for the constant-density case.

Three-dimensional case.This is a simple extension of the previous case to three space dimen-
sions. The grid consists of 64× 64× 128 cells. The initial data are:
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t = 1.500 t = 0.000 t = 0.000

t = 0.000 t = 1.125t = 0.000

Figure 28. Three-dimensional falling ‘droplet’ at Fr= 1 and density ratio 1000: Iso-surfaceρ = 500 of density.
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Figure 29. Sketch of a simplified thermo-acoustic refrigerator.
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Figure 30. Computational domain (dotted line).

ρ(x, y,0) =
{

1000·0 if 0·0≤ z ≤ 1·0 or 0·0≤ r ≤ 0·2,
1·0 if 1·0< z ≤ 2·0 or 0·2< r,

p(x, y,0) = 1, v(x, y,0) = 0 and r =
√
(x − 0·5)2+ (y − 0·5)2+ (z − 1·75)2 .

Figure 28 shows the density iso-surface 500 as the droplet falls and impacts into the surface
of the heavy fluid in the closed cavity.

Thermo-acoustic refrigerator.This example shows that our method can treat compressible
zero-Mach-number flows with heat conduction. A thermo-acoustic refrigerator basically con-
sists of a resonance tube, a stack of plates, two heat exchangers and an acoustic driver (usually
a loudspeaker), (see, [63, 64, 65]). The basic components of a thermo-acoustic refrigerator are
sketched in Figure 29: The flow within the tube is characterized by two length scales, namely
the short hydrodynamic and the long acoustic scale. The Mach number in the tube is very
small, typicallyO(10−3). Thus, the flow between the plates, which are much shorter than
the tube, can be assumed to be incompressible with a prescribed velocity field imposed on
the inlet and outlet boundaries. The calculation focuses on the flow along the plate and the
heat exchangers. The plate is modeled as a zero thickness plate with finite thermal mass. The
thickness of the heat exchangers is zero as well. The geometry of the domain for this simplified
simulation is shown in Figure 30.

The problem is defined in terms of several characteristic numbers: the Prandtl number Pr,
the Reynolds number Re and the ratio of specific heatsγ . The temperatures of the heat ex-
changersThot, Tcold are kept constant. The temperature distribution within the plate is governed
by a heat conduction equation:
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Table 3. Specific numbers.

Pr 0·68 uinlet 0·7711cos(t)

Re 200 vinlet 0·0
γ 5/3 uoutlet 1·0267cos(t)

Thot 1·0267 voutlet 0·0
Tcold 0·9733 λ 0·05

Pes 300 κ 41·14

∂T

∂t
= 1

Pes

(
∂2

∂x2
T + 2κ

λ

∂

∂y
T

∣∣∣∣
gas

)
. (4.3.21)

Where Pes denotes the Peclet number of the solid,κ represents the ratio of the thermal
conductivities andλ is the thermal penetration depth. The specific values are listed below.
After 200 acoustic cycles a periodical solution is reached. Figure 31 shows the temperature
at different times during the 201-th acoustic cycle. The heat fluxes through the surface of the
exchangers during an acoustic cycle are shown in Figure 32.

4.3.3. Summary

The results discussed above show that a finite-volume compressible-flow solver can be ex-
tended to handle incompressible, zero-Mach-number flows. Our approach is general enough
to include a wide variety of underlying compressible-flow schemes. The major ingredients of
the required extensions are two pressure Poisson solutions. These allow us to enforce zero-
Mach-number elliptic divergence constraints for the convective numerical fluxes, as well as
for the final cell-centered velocity fields.

The design of the scheme directly draws on the low-Mach-number asymptotic analysis of
the governing equations in conservation form presented in Section 2.1. This analysis shows
how the well-known velocity- divergence constraint of incompressible flows emerges in a
natural way from an associated divergence constraint on the energy flux as the Mach number
vanishes. The insight gained in this way is used to construct numerical fluxes of mass, mo-
mentum and energy that are consistent with the zero-Mach-number limit. The scheme thus
represents a discretization of the full conservation equations rather than one of an asymptotic
limit system which would explicitly introduce a velocity-divergence constraint! The compu-
tational examples given are chosen to demonstrate various features of the proposed method.
Thus, we show second-order accuracy for a test problem proposed by Almgrenet al., [56],
and we obtain competitive results on the test problem of an advected zero circulation vortex
as proposed by Gresho and Chen, [57]. After adding a first-order-in-time extension to viscous
incompressible flow, we find very close agreement with published results in the literature for
standard driven-cavity test problems (see Ghia, Ghia and Shin, [59]). Notably, grid refinement
at constant convection-based CFL number of 0·8 as well as decreasing time steps at constant
spatial resolution do not affect the results. This suggests stability and convergence of the
method, even though we cannot provide rigorous proofs at this stage. Excellent behavior of
the scheme is found for variable density flows. A ‘falling droplet’ with a density ratio of 1000,
simulated by a suitable choice of an initial entropy distribution in an ideal gas, is handled
without evidence of pressure, velocity or density oscillations.
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Figure 31. Temperature field during different times of an acoustic cycle;T := 2π .
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Figure 32. Heat fluxes through the surface of the hot (left) and cold (right) heat exchanger during an acoustic
cycle.

4.4. A GODUNOV-TYPE SCHEME FOR WEAKLY COMPRESSIBLE FLOWS

This section is devoted to the extension of a standard conservative finite-volume method
designed for the compressible Euler equations to unsteady low-Mach-number flows. Neglect-
ing the gravitational force field, we can rewrite the conservation laws (4.3.1) in one space
dimension in the form

∂tu(x, t)+ ∂xf(u(x, t)) = 0 in �× R+0 , (4.4.1)

whereu = (ρ,m = ρv, ρe)T denotes the vector of conserved variables andf(u) = (m,mv+
p/M̌2,Hm)T represents the convective-flux function. As seen in Section 4.3, the eigenvalues

of the Jacobian of the flux function arev andv±c/M̌2 with the speed of soundc =
√
γ
p

ρ
. Our

aim is to construct a finite-volume (FV) Godunov-type method for (4.4.1) which is adaptive
in the sense that 1) for M→ 0 it reduces to a FV method for zero-Mach-number flows of the
kind described in Section 4.3, 2) for M→ 1 it becomes a standard compressible flow solver.
We proceed in three steps:

• Decompose the flux function in the form
f(u) = h(u)+ a(u); (4.4.2)

• Employ a modified Riemann solver to approximate the fluxes of the system
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∂tu+ ∂xh(u) = 0; (4.4.3)
• Correct the obtained fluxes to get an approximate solution of system (4.4.1) which is

uniformly accurate independently of the Mach number.

In the first step we define a suitable decomposition of the flux functionf of Equation (4.4.2).
The aim is to decomposef in such a way that subsystem (4.4.3) can be efficiently solved with
some standard Godunov-type scheme. Moreover, we want the correction to be applied in step 3
to vanish asM̌ → 1. Thus, a suitable decomposition should fulfill the following requirements

• System (4.4.3) is hyperbolic and the eigenvalues of the Jacobian of the flux functionh
areO(1) asM̌ → 0.

• The flux functionh has to reproducef in the case thaťM tends to one,i.e.,
lim

M̌→1
a(u) = 0.

In agreement with [6] we define the flux functionh as follows

h(u) =


m

mv + p
H ∗m

 . (4.4.4)

Here the ‘enthalpy’H ∗ is defined in terms of a non-local pressurepNL:

H ∗ = ρe + pNL + M̌2p

ρ
.

This pressure is computed by use of the averaging operator

ϕσ (t) = (Mσ ϕ) (t) = 1

|σ |
∫
σ

ϕ(x, t) dx, ∀σ ⊂ �

as

pNL =
(
1− M̌2

)
p�(0). (4.4.5)

A straightforward calculation shows that the eigenvalues of the Jacobian of the flux function
h arev and

v ±
√
p + (γ − 1)(pNL + M̌2p)

ρ︸ ︷︷ ︸
=: c∗

.

Moreover, the Jacobian ofh has a complete set of eigenvectors. Furthermore, one has

a(u) = f(u)− h(u) =


0

−M̌2− 1

M̌2
p

−(M̌2− 1)pv − pNLv

 . (4.4.6)
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Taking into account the definition of the non-local pressure (4.4.5) we easily see thata(u)
satisfies the condition

lim
M̌→1

a(u) = 0.

Therefore, the decompositionf(u) = h(u) + a(u) satisfies both requirements (4.4.4) and
(4.4.6). For the numerical computation of unsteady flows it is advisable to use a second-order
time stepping method. Letun(x) denote an approximation of the solution vectoru(x, tn) of

∂tu+ ∂xg(u) = 0. (4.4.7)

Then

u0
g(x) = u(x, t0)

un+1
g (x) = ung(x)− δt8g(u, δt), n = 0,1, . . .

(4.4.8)

with

8g(u, δt) = −∂xg
(

ung(x)−
δt

2
∂xg

(
ung(x)

))
represents a consistent second order predictor-corrector time discretization. Let8 = (8(ρ),8(m) ,

8(ρe)

)T
be a second-order method for the Euler equations (4.4.1) and8h a second-order

method for the auxiliary system (4.4.3). The difference between the intermediate momenta of
the Euler equations and those of the auxiliary system can be written as

mn+
1
2 −mn+ 1

2
h = δt

2

M̌2− 1

M̌2
∂xp

n+ 1
2 +O(δt2). (4.4.9)

This influence yields the asymptotic correction of the mass fluxes in the form

ρn+1 = ρn − δt8(ρ) (u, δt)+O(δt3)

(4.4.9)= ρn − δt∂x
(
m
n+ 1

2
h + δt

2

M̌2− 1

M̌2
∂xp

n+ 1
2

)
+O(δt3)

= ρn − δt8h,(ρ) (u, δt)− δt8a,(ρ) (u, δt)+O(δt3)
with

8a,(ρ) (u, δt) = δt

2

M̌2− 1

M̌2
∂2
xp

n+ 1
2 . (4.4.10)

The same analysis applied to the intermediate velocity distribution gives (ρn+ 1
2 = ρn+ 1

2
h )

vn+
1
2 = vn+ 1

2
h + δt

2ρn+ 1
2

M̌2− 1

M̌2
∂xp

n+ 1
2 +O(δt2).

Consequently, the entire momentum flux including the second-order asymptotic correction
terms reads

mn+1 = mn − δt8h,(m) (u, δt)− δt8a,(m) (u, δt)+O(δt3)
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where

8a,(m) (u, δt) = −M̌2− 1

M̌2
∂xp

n+ 1
2 + ∂x(p − ph)

n+ 1
2

+δt M̌
2− 1

M̌2
∂x

(
v
n+ 1

2
h ∂xp

n+ 1
2

)
.

(4.4.11)

Analogously, we achieve the energy flux in the form

(ρe)n+1 = (ρe)n − δt8h,(ρe) (u, δt)− δt8a,(ρe) (u, δt)+O(δt3) (4.4.12)

where

8a,(ρe) (u, δt)

= −(M̌2− 1)∂x(pv)n+
1
2∂x(pNLv)

n+ 1
2

+M̌2∂x

(
(pn+

1
2 − pn+ 1

2
h )vn+

1
2

)
+ δt

2

M̌2− 1

M̌2
∂x(H

∗,n+ 1
2

h ∂xp
n+ 1

2 )

+δt
2
∂x

((
(M̌2− 1)∂x(pv)

n+ 1
2 + ∂x(pNLv)

n+ 1
2

)
vn+

1
2

)
.

(4.4.13)

Two facts are remarkable. First, the additional terms representing the differences between
8a and a straightforward discretization of the asymptotic fluxesa(u) are of orderO(δt2)
and hence negligible in the case of a first-order time-stepping procedure. Second, the above-
mentioned additional terms can be substituted by an arbitrary first-order approximation with-
out affecting the order of accuracy. For example, one can evaluate the pressure derivative
within equation (4.4.9) at any time leveltm ∈ [tn, tn+1].
4.4.1. Evolution of the spatially homogeneous leading-order pressure

According to the results of the asymptotic single- as well as multiple-scale analysis, the evo-
lution of the spatial homogeneous leading-order pressurep(0) is due to compression from the
boundary∂� or expansion of the reacting gas itself. In agreement with Equation (2.1.38) we
employ

p(0),n+1 = p(0),n − δtγp(0),n (vnr − vn` ) , (4.4.14)

wherevr andv` represent the velocity at the right and left boundary of the computational
domain, respectively.

4.4.2. Evolution of the acoustic first-order pressure

The evolution of the acoustic pressurep(1) is governed by the system of linearized acoustics
(2.1.41), which can be rewritten in the form

∂tm+ 1

M̌
∂xp

(1) = 0, ∂tp
(1) + 1

M̌
∂x (c m) = 0, (4.4.15)

where
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c =
√
γ
p(0)

ρ
.

The system (4.4.15) is hyperbolic with characteristic signal speeds± c

M̌
= O

(
1
M̌

)
. Since

the time-step size with explicit discretization of the auxiliary system satisfiesδt = O(δx), it
is necessary to employ a suitable discretization technique for the solution of system (4.4.15)
to overcome the restrictive Courant-Friedrichs-Lewy condition for an explicit forward Euler
time discretization. Implicit time-stepping schemes have the advantage that the numerical
domain of dependence always covers the physical one and hence, these methods inherently
fulfill the CFL-condition. Due to the fortunate property that the Jacobian of the flux function
within the system (4.4.15) is very simple, we decided to employ an implicit discretization.
The linear system arising from the linearization of the flux function is solved by means of
the BiCGSTAB method [66] preconditioned by an incomplete LU factorization technique.
The initialization of the long-wave momentum and density distribution is performed by the
decomposition algorithm described in Section 4.1.

4.4.3. Energy-Poisson-Equation

Introducing the equation of state written as

(ρe)n+1 = p(0),n+1

γ − 1
+ M̌p(1),n+1

γ − 1
+ M̌2p(2),n+1

γ − 1
+ M̌2

2
ρn+1 (vn+1)2

into the energy equation (4.4.12) and omitting terms of orderO(δt3) we have

M̌2

γ − 1
p(2),n+1 = (ρe)n − p

(0),n+1

γ − 1
− M̌p(1),n+1

γ − 1
− M̌2

2
ρn+1

(
vn+1

)2
−δt8h,(ρe) (u, δt)− δt8a,(ρe) (u, δt) .

Note that the leading-order pressurep(0),n+1 and the acoustic pressurep(1),n+1 can be com-
puted by means of (4.4.14) and by solving the system of linearized acoustics (4.4.15), respec-
tively. We use a particular implicit discretization of the asymptotic part (4.4.13):

8a,(ρe) (u, δt)

= −(M̌2− 1)∂x(pv)n+
1
2 − ∂x(pNLv)

n+ 1
2

+M̌2∂x

(
(pn+

1
2 − pn+ 1

2
h )vn+1

)
+ δt

2

M̌2− 1

M̌2
∂x(H

∗,n+ 1
2

h ∂xp
n+1)

+δt
2
∂x

((
(M̌2− 1)∂x(pv)

n+1+ ∂x(pNLv)
n+1
)
vn+1

)
.

(4.4.16)

Using the pressure decomposition in the asymptotic flux function (4.4.16) and assuming that

the pressure termspn+ 1
2 andp

n+ 1
2

h as well as the enthalpy formH
∗,n+ 1

2
h are available, we

can discretize the derivatives within the asymptotic fluxes by means of central differences to
achieve a linear system of equations

Ap(2),n+1 = b, p(2),n+1 =
(
p
(2),n+1
1 , . . . , p

(2),n+1
k

)T
(4.4.17)
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for the calculation of the second-order pressure. The matrix and the right- hand side of Equa-
tion (4.4.17) contain density and velocity contributions at the time leveltn+1. Due to this fact
we employ a fix-point iteration where the asymptotic flux corrections8a are computed simul-
taneously. Therefore, we takevn+1

h andρn+1
h , provided by the discretization of the auxiliary

system as the initial guess for the velocity and density (i.e.vn+1,0 = vn+1
h , ρn+1,0 = ρn+1

h ),
respectively. Now, the matrix and the right-hand side are fixed and one can solve the sys-
tem (4.4.17) to obtainp(2),n+1,0. Using the variablesρn+1,0, vn+1,0, andp(2),n+1,0, we can
evaluate the asymptotic fluxes completely by means of a Crank-Nicolson approach. Clearly,

a prescription for the computation ofpn+ 1
2 , p

n+ 1
2

h , andH
∗,n+ 1

2
h is required to close the sys-

tem. The pressurep
n+ 1

2
h and the enthalpy formH

∗,n+ 1
2

h are given by the discretization of the
auxiliary system (4.4.3) using̃δt = δt

2 . In order to compute the pressurepn+
1
2 , we use the

same procedure as mentioned above for the time interval[tn, tn+ 1
2 = tn + δ̃t] where the

approximation

8a,(ρe) (u, δt)

= −(M̌2− 1)∂x(pv)n+
1
2 − ∂x(pNLv)

n+ 1
2

+M̌2∂x

(
(pn+

1
2 − pn+ 1

2
h )vn+

1
2

)
+ δ̃t M̌

2− 1

M̌2
∂x

(
H
∗,n+ 1

2
h ∂xp

n+ 1
2

)
+δ̃t∂x

((
(M̌2− 1)∂x(pv)n+

1
2 + ∂x(pNLv)

n+ 1
2

)
vn+

1
2

)
is employed and the Crank-Nicolson time-stepping scheme for the asymptotic fluxes is re-
placed by a backward Euler approach.

4.4.4. Spatial discretization

We discretize the Euler equations (4.4.1) on a bounded domain� ⊂ R. The computational
domain is subdivided into control volumesσ1, . . . , σk. First, consider the auxiliary hyperbolic
system (4.4.3). We callu a weak solution of system (4.4.3) on�, if

d

dt

∫
σ

u dx + h(u)
∣∣σ r
σ `
= 0

holds for all control volumesσ ⊂ � with σ r andσ ` representing the right and left boundary
of σ , respectively. To compute numerical fluxes for the cell averages

ui(t) =
(
Mσiu

)
(t), (4.4.18)

we used the modified Riemann-problem solver described in [6]. In the limitM̌ → 1 this flux
is consistent with a standard numerical flux for the Euler equations. To achieve a second-order
scheme in space and time, we use linear reconstruction of the characteristic variables in spatial
directions as well as a MUSCL approach in time. A detailed description of this Godunov-type
algorithm is given in [67].

The approximation of the asymptotic fluxes is done via finite differences. Each physical
quantityϕi+ 1

2
at the interface between two adjacent boxesσi andσi+1 is computed as a mean

value of the corresponding cell averages. Similarly, we approximate the derivatives(∂xϕ)i+ 1
2

in the form of central differences.
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4.4.5. Time-dependent scaling

In order to gain a suitable scaling of the physical quantities one has to calculate the required
reference values from a given flow field. In a standard approach the reference values are set
at the initial time and kept constant throughout the computation. Here, however, we want to
consider flows which may evolve through different regimes. Almost incompressible initial
conditions may turn into weakly compressible flows orvice versa. Thus, it is necessary to
implement some kind of dynamical time-dependent scaling and the reference values must
adapt to the evolving numerical solution.

As seen in Section 2.1, a scaling is defined in terms ofv̂ref, p̂ref and ρ̂ref via the Mach
numberM̌

M̌ = v̂ref√
p̂ref
ρ̂ref

, (4.4.19)

which is a measure of the compressibility of the flow. As seen in Section 4.1,M̌ is also a
measure of the wave length of acoustic waves. We assume that a nearly incompressible flow
field is characterized by the following two properties of the dimensional quantities. First, we
expect that the divergence of the velocity filed is very small, and second, the flow field shows
only tiny fluctuations within the pressure distribution.

The time-dependent reference values for density and pressure are determined by averaging
each quantity over the whole domain�,

ρ̂ref = ρ̂ref(t) = 1

|�|
∫
�

ρ̂(x, t)dx

and

p̂ref = p̂ref(t) = 1

|�|
∫
�

p̂(x, t)dx,

respectively. Using these values, we can determine the global reference of the speed of sound
as

ĉref =
√
γ
p̂ref

ρ̂ref
.

We define three indicators to measure the different properties of weakly compressible fluid
flows. One of these is coupled with the pressure distribution as stated in Section 4.1. To prevent
misunderstandings, the parameter which is calculated within the decomposition algorithm is
calledM̌ l. The other two characterize the velocity flow field and are given by

M̌v = Cvmaxx∈� |v̂|
ĉref

and

M̌div = Cdiv

√
maxx∈� |∂x v̂|

ĉref
.
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Now, we can formally define the reference parameterM̌. In order to ensure that the standard
Godunov-type solver is used in the case that one indicator is greater or equal than a critical
valueα, α ≤ 1, we define

˜̌M = min
{
α,max(M̌v, M̌div, M̌ l)

}
,

and a function

g(
˜̌M) = 1+

1
α
− 1

α2
˜̌M

2
.

The reference parameter is then given by

M̌ = g( ˜̌M) ˜̌M, ˜̌M ∈ [0,1],
where Equation (4.4.19) now yields the velocity reference in the form

v̂ref = M̌ĉref√
γ
.

We complete the scaling process by taking the reference time equal to the advective time
scale:

t̂ref = l̂ref

v̂ref
.

Due to the indicatorsM̌v and M̌div it is guaranteed that the dimensionless velocity field is
limited,

max
x∈�
|v| = maxx∈� |v̂|

v̂ref
= √γ M̌v

M̌
,

and that the divergence-free condition in the limit of a vanishing Mach number is fulfilled,

max
x∈�
|∂x v̂| = maxx∈� |∂xv|

v̂ref
= √γ M̌

2
div

M̌
.

We want to add some remarks regarding the adaptive concept. As seen before, a time-
dependent adaption can easily be achieved by a simple rescaling of each physical quantity
after each time step. Because the decomposition of the physical quantities has to be carried
out at each time step, the computation of the indicators, as well as of the average values, is not
very expensive in comparison to the costs of the decomposition. But it is possible to decrease
the computational effort and avoid the rescaling of density and pressure, if their average values
do not rapidly change in time. Then, only the velocity field has to be rescaled after each time
step to employ the influences of a varying reference parameterM̌ to the flow field.

4.4.6. Numerical results

In order to test the novel decomposition algorithm described in Section 4.1 we study 1) a
weakly compressible flow with large density fluctuations and 2) the transition of a weakly
incompressible flow into the compressible regime. These problems were originally proposed
in [6].
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Figure 33.Density distribution at timet = 5,071 s. Figure 34. Time dependent adaptation of the Mach
number parameter̂M .

First, consider a long-wave acoustic signal periodically passing through a region in which
the density has some short-wave-length large-amplitude fluctuations. Every period the density
distribution will be displaced by the acoustic signal in one direction. The computation is car-
ried over on�̂ = [−51,51]which is subdivided into 1020 regular cells. The initial conditions
are given by

ρ̂(x, t = 0) =
(
1+ 2M̌

(
1+ cos(2M̌πx)

)
+8(x)1

2 sin(80M̌πx)
)
,

v̂(x, t = 0) = √γ
(
1+ cos(2M̌πx)

)
,

p̂(x, t = 0) = 4

M̌2

(
1+ 2γ M̌

(
1+ cos(2πM̌x

))
and

8(x) =


1
2

(
1− cos(10M̌πx)

)
, if 0 ≤ x ≤ 2

10M̌
,

0, otherwise.

Periodic boundary conditions are imposed on the left and on the right end of�̂. The parameter
M̌ and the reference lengtĥlref are set to 1

102 and 1, respectively.
In Figure 33 the density profile at the end of the computation(T = 5,071) is plotted. The

amplitudes of the short-wave density perturbation are almost preserved. The time evolution
of the reference parameterM̌ is shown in Figure 34. The small oscillations ofM̌ are due to
the fact that the acoustic wave moves faster than the density distribution. Therefore, density
fluctuations change their position relative to the extrema of the acoustic wave. At the beginning
of the computation the indicatořMv controls the progress of the reference parameter. Then,
the acoustic wave slowly steepens and at the end the indicatorM̌div takes over.

In the second example we compute the steepening of an acoustic wave into a shock. We use
a regular discretization of the domain̂� = [−22,44] into 330 boxes with periodic boundary
conditions. The initial conditions are
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Figure 35.Density distribution at timet = 33 s. Figure 36.Evolution of the reference parameter.

ρ̂(x, t = 0) =
(

0·955+ 1

11

(
1− cos

(πx
11

)))
,

v̂(x, t = 0) =
√
γ

11

(
1− cos

(πx
11

))
,

p̂(x, t = 0) =
(
2γ + γ

11

(
1− cos

(πx
11

)))
,

for x ≤ 0 and

ρ̂(x, t = 0) = 0·955, v̂(x, t = 0) = 0, p̂(x, t = 0) = 2γ,

otherwise. The reference length isl̂ref = 1. Figure 35 shows the density distribution at time
t = 33 with and without adaptation of̌M. The time evolution ofM̌ is given in Figure 36. The
comparison between the two computations indicates the necessity of dynamically computing
M̌ and adapting the computational method in the case of transitions from weakly compressible
to compressible flow regimes.

4.5. HYPERBOLIC ELLIPTIC SPLITTING FORMHD EQUATIONS

In this section the aim is to use results of Section 2.2 in distinguishing between terms related
with pure convection and terms related with the fast wave speeds. As in the case of Euler
equations the idea behind this is to get a splitting of the system that enables us to treat the
convection terms that remain hyperbolic also in the limit, and the fast-wave-speed terms, that
become elliptic in the limit, with different numerical methods.

Especially for fusion plasma, the time-step stability constraint of explicit schemes may
often be too restrictive and several implicit or semi-implicit schemes have been proposed (see
[68], [69]) and references therein. For the case of small Mach numbers, the implicitness of
our approach reduces to a simple pressure-correction equation. The convection system for the
MHD equations takes the following form:

ρt + ρxu = 0 , (4.5.1)
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ut + uux + 1

2Av2ρ
(B2)x = 0 , (4.5.2)

vt + uvx − 1

Av2ρ
B1B2x = 0 , (4.5.3)

wt + uwx − 1

Av2ρ
B1B3x = 0 , (4.5.4)

B2t + B2ux + uB2x − B1vx = 0 , (4.5.5)

B3t + B3ux + uB3x − B1wx = 0 , (4.5.6)

pt + pxu = 0 . (4.5.7)

As usual we can write Equations (4.5.1) – (4.5.7) as a system

qt + Aqx = 0 (4.5.8)

of evolution equations with the vector

q = (ρ, u, v,w,B2, B3, p)
T (4.5.9)

of the physical variables. The MatrixA has the eigenvalues

λ1 = u− 1

Av

√
B2

ρ
, λ2 = u− 1

Av
cA , (4.5.10)

λ3 = λ4 = λ5 = u , (4.5.11)

λ6 = u+ 1

Av
cA , λ7 = u+ 1

Av

√
B2

ρ
(4.5.12)

(cA is the Alfvén velocity) and a complete set of eigenvectors. Therefore, system (4.5.1) –
(4.5.7) is strictly hyperbolic. The eigenvalues ofA correspond to the different wave speeds
associated with fluid convection and the magneto-sonic waves. The remaining terms of (2.2.2)
reduce to the system of the sonic waves (4.2.6). Therefore, we have all terms that cause fast
wave speeds in this system. We call this system the elliptic system. The extension to multiple
space dimensions is straightforward.

While the hyperbolic system (4.5.1) – (4.5.7) can be approximated with an explicit scheme,
the system of the sonic waves should be discretized implicitly in time. This can be done as
described in Section 4.2 for the equations of gas dynamics.

In the case of small Alfvén number the termsB2ux − B1vx andB3ux − B1wx become
constant in space. Their time behavior is determined by the boundary values, so the informa-
tion propagates with infinite velocity and may be considered to be elliptic. The leading-order
terms of the derivatives of the magnetic terms in the velocity equations now vanish andB

becomes constant in space. In this case the splitting of the fast and slow waves may not lead
to an efficient approximation in comparison with a fully implicit scheme.
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5. Conclusions

In this paper we have introduced the notion of asymptotically adaptive numerical methods.
This research was motivated by the fact that singularly perturbed systems typically require
very different numerical solution methods, depending on whether they are far from or very
close to the singular limit. This issue becomes critical when, in some general application,
the solution dynamically evolves towards or away from an asymptotic limit regime. In that
case, standard numerical methods will fail one way or the other. Here we have proposed
a new strategy for the construction of uniformly applicable discretizations. The approach
requires a close interplay between application-oriented asymptotics and numerical analysis.
Typically, one must first detect the origin of some failure of an available standard numerical
scheme. This failure is then traced back to an asymptotic singular limit. Next, an asymptotic
analysis is pursued, yielding valuable insight into the changes of the problem’s mathematical
structure as this limit regime is approached. This knowledge is then exploited to construct an
extended numerical scheme that operates with uniform efficiency and accuracy for arbitrary
values of the asymptotic parameter. Finally, for problems in which the asymptotic parameter
itself is part of the solution, one needs additional control strategies which determine the actual
instantaneous or local parameter value and trigger an automatic adjustment of the numerical
discretization.

In this paper we have described a number of typical applications that call for an imple-
mentation of the above strategy. These include variable-density low-Mach-number flows,
atmospheric flows under a distinguished limit of low-Froude and low-Mach numbers, and
Magneto-Hydrodynamics at low Mach or Alfvén numbers. For the ‘pure’ low-Mach-number
case, we have almost completed the program sketched above. A numerical method for fully
compressible, multi-dimensional flows has been modified to also ‘survive’ the zero-Mach-
number limit. We have proposed a numerical detection strategy that provides quantitative
indicators of whether a flow is in the appropriate asymptotic regime or not. This detection
scheme, currently implemented only for a single space dimension, has then be used to de-
sign an asymptotically adaptive numerical method that, in fact, operates uniformly accurately
and efficiently for arbitrary Mach number. A second application of these asymptotic results
has been the extension of an existing standard zero-Mach-number flow solver to the weakly
compressible regime. This extension addresses, in particular, the problem of long-wavelength
acoustics, which is typically ignored in competing approaches. Ouransatzhas led to a natural
kind of ‘multi-gridding’: In the regime considered acoustic perturbations live on large length
scales only, and are thus amenable to accurate representation on relatively coarse computa-
tional grids. The quasi-incompressible, vortical component of the flow field is active on much
smaller length scales and is thus represented on a finer grid.

For the atmospheric flow and magneto-hydrodynamics problems we have described as-
ymptotic analyses that provide the necessary insight for understanding characteristic failures
of standard numerical schemes. Our current efforts are directed at exploiting these results in
the construction of new numerical techniques along the lines described above.
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